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Abstract This article reviews the literature on artificial neural networks (ANNs) applied
to accounting and finance problems and summarizes the ‘suggestions’ from
this literature. The first section reviews the basic foundation of ANNs to
provide a common basis for further elaboration and suggests criteria that
should be used to determine whether the use of an ANN is appropriate. The
second section of the paper discusses development of ANN models including:
selection of the learning algorithm, choice of the error and transfer functions,
specification of the architecture, preparation of the data to match the architec-
ture, and training of the network The final section presents some general
guidelines and a brief summary of research progress and open research ques-
tions. Copyright  2000 John Wiley & Sons, Ltd.

INTRODUCTION

Artificial neural networks (ANNs) have
emerged as a powerful statistical modeling
technique. ANNs detect the underlying func-
tional relationships within a set of data and
perform such tasks as pattern recognition,
classification, evaluation, modeling, prediction
and control (Lawrence and Andriola, 1992).
Several systems based on ANNs and in wide-
spread commercial use for accounting and fin-
ancial tasks are described by Brown et al. (1995).
These include:

I FALCON, used by six of the ten largest credit
card companies to screen transactions for
potential fraud.

I Inspector, used by Chemical Bank to screen
foreign currency transactions.

* Correspondence to: James R. Coakley Business,
Department of Accounting, Finance and Information
Management, Boxell Hull 200, Corvallis, OR 97331-
2603, USA. E-mail: coakley@bns.orst.edu

Copyright  2000 John Wiley & Sons, Ltd. Accepted 7 July 1999

International Journal of Intelligent Systems in Accounting, Finance & Management

Int. J. Intell. Sys. Acc. Fin. Mgmt. 9, 119–144 (2000)

I Several ANNs used to assist in managing
investments by making predictions about
debt and equity securities as well as deriva-
tive instruments.

I Several ANNs used for credit granting,
including GMAC’s Credit Advisor that grants
instant credit for automobile loans.

I AREAS, used for residential property valu-
ation.

Developers of commercially used ANNs gener-
ally consider the inner workings of their sys-
tems to be proprietary information that gives
them a competitive advantage. Thus, they are
reluctant to disclose information about those
systems. The fact that a system is in commercial
use provides some insight into the kind of tasks
and domains for which ANNs are likely to be
useful. Unfortunately, the lack of details on
internal system structure precludes using the
published information about those systems to
help answer open research questions about the
best structure for ANNs in accounting and fin-
ance.



In the past few years, many researchers have
used ANNs to analyze traditional classification
and prediction problems in accounting and
finance. The research that has compared the
ANNs with traditional statistical methods pro-
duced mixed results. In spite of all the research,
we still do not have any general guidelines to
tell us when to use ANNs or which ANN
architecture to employ.

Numerous articles have appeared recently
that surveyed journal articles on ANNs applied
to business situations. Wong et al. (1997) sur-
veyed 203 articles from 1988 through 1995.
They classified the articles by year of publi-
cation, application area (accounting, finance,
etc.), journal, various decision characteristics
(problem domain, decision process phase, level
of management, level of task interdependence),
means of development, integration with other
technologies, comparative technique (discrimin-
ant analysis, regression analysis, logit and ID3
were the most common techniques), and major
contribution. The survey included five articles
in accounting and auditing, and 54 articles in
finance. Given the focus toward decision pro-
cess, and the limited coverage of accounting
and auditing, the paper does not provide much
insight into accounting and finance issues.

O’Leary (1998) analyzed 15 articles that
applied ANNs to predict corporate failure or
bankruptcy. For each study, he provided infor-
mation about the data, the ANN model and
software (means of development), the structure
of the ANN (input, hidden and output layers)
training and testing, and the alternative para-
metric methods used as a benchmark. He then
analyzed the overall ability of the ANN models
to perform the prediction task.

Zhang et al. (1998) surveyed 21 articles that
addressed modeling issues when ANNs are
applied for forecasting, and an additional 11
studies that compared the relative performance
of ANNs with traditional statistical methods.
For the modeling issues, they addressed the
type of data, size of the training and test
samples, architecture of the model (number of
nodes in each layer and transfer function),
training algorithm used, and the method of
data normalization. The paper provides insights
into these modeling issues by summarizing the
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numerous, sometimes conflicting, suggestions
derived from the articles. Only one of the art-
icles pertained to an accounting and finance
problem.

Vellido et al. (1999) surveyed 123 articles
from 1992 through 1998. They included 8 art-
icles in accounting and auditing, and 44 articles
in finance (23 on bankruptcy prediction, 11 on
credit evaluation, and 10 in other areas). They
provided information on the ANN model
applied, the method used to validate training
of the model, the sample size and number of
decision variables, the comparative parametric/
linear technique used as a benchmark, and
main contribution of the article. They summar-
ize the most frequently cited advantages and
disadvantages of the ANN models. The paper
does provide a sense of which ANN method-
ologies have been applied to accounting and
finance problems, but offer little insight into
how to choose and develop an appropriate
ANN model.

The objective of this paper is to provide a
broader review of the literature on ANNs
applied to accounting and finance problems,
focusing on the modeling issues, and summar-
izing the ‘suggestions’ from this literature. It is
more like a tutorial on modeling issues than a
critical analysis. A subsequent paper will pro-
vide a more critical look at these modeling
issues in the accounting and finance articles.

The first section will review the basic foun-
dation of ANNs to provide a common basis
for further elaboration. Based on this foun-
dation, we suggest criteria that should be used
to determine whether it is appropriate to use
an ANN. For a more detailed description of
ANNs, we refer the reader to numerous other
articles that provide insights into various net-
works (Anderson and Rosenfeld, 1988; Hecht-
Nielsen, 1990; Hertz et al., 1991; Hoptroff et al.,
1991; Lawrence, 1991; Rumelhart and McClel-
land, 1986; Waite and Hardenbergh, 1989;
Wasserman, 1989).

The second section of the paper discusses
development of ANN models. Once the
decision to use an ANN is made, the researcher
faces numerous modeling decisions concerning:

I The selection of the learning algorithm



I The choice of the error and transfer functions
I The specification of the architecture
I The appropriate preparation of the data to

match the architecture and
I The approach used to train of the network.

The final section presents some general guide-
lines, conclusions on research progress and
open research questions.

FOUNDATIONS

Background

ANNs are structures of highly interconnected
elementary computational units. They are
called neural because the model of the nervous
systems of animals inspired them. Each compu-
tational unit (see Figure 1) has a set of input
connections that receive signals from other
computational units and a bias adjustment, a
set of weights for each input connection and
bias adjustment, and a transfer function that
transforms the sum of the weighted inputs and
bias to decide the value of the output from
the computational unit. The sum value for the
computational unit (node j) is the linear combi-
nation of all signals from each connection (Ai)
times the value of the connection weight
between node j and connection i (Wji) (equation
(1)). Note that equation (1) is similar to the

Figure 1 Structure of a computational unit (node j)
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equation form of multiple regression: Y9 5 B0
1 Si [Bi * Xi]. The output for node j is the result
of applying a transfer function g (equation (2))
to the sum value (Sumj).

Sumj 5 Si [Wji * Ai] (1)

Oj 5 g(Sumj) (2)

If the transfer function applied in equation
(2) is linear, then the computational unit
resembles the multiple regression model. If the
transfer function applied in equation (2) is the
sigmoid (see description below), then the com-
putational unit resembles the logistic regression
model. The only difference between the ANN
and regression models is the manner in which
the values for the weights are established.
ANNs employ a dynamic programming
approach to iteratively adjust the weights until
the error is minimized while the regression
models compute the weights using a mathemat-
ical technique that minimizes the squared error.

Most ANNs applied in the literature are actu-
ally a network of these computational units
(hereafter referred to as nodes) interconnected
to function as a collective system. The architec-
ture of the network defines how the nodes in

Figure 2 Feed-forward neural network structure
with two hidden layers



a network are interconnected. A multi-layer,
feed-forward architecture is depicted in Figure
2. The nodes are organized into a series of
layers with an input layer, one or more hidden
layers, and an output layer. Data flows through
this network in one direction only, from the
input layer to the output layer.

What is the advantage of a multi-layered
network? An ANN model with no hidden lay-
ers (a single computation unit) can separate
data that falls on opposite sides of a hyperplane
(see the left panel in Figure 3). Compared to a
linear model, the hyperplane generated by the
ANN model will be non-linear (note that it
has a large linear section, but curves at the
endpoints). In this example, the linear and non-
linear ANN models would produce comparable
classification accuracies (each would misclassify
four of the 49 data points).

If a single hidden layer is added, then each
node in the hidden layer will form a hyper-
plane. The nodes in the output layer of this
single hidden layer network combine the hy-
perplanes to create convex open or closed
regions. An ANN model with two nodes in a
single hidden layer is depicted in the middle
panel in Figure 3. In this example, a single
node in the output layer selects which of the
hyperplanes to apply. The classification accu-
racy of this one hidden layer model has
increased to 48 of the 49 data points.

If two hidden layers are used, then the
second hidden layer combines the hyperplanes
from the first hidden layer into convex regions,
and the nodes in the output layer now combine
the convex regions to form concave regions.

Figure 3 Example to demonstrate the advantages
of hidden layers
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The ANN model depicted in the right panel of
Figure 3 would have six nodes in the first
hidden layer and four nodes in the second
hidden layer. The single node in the output
layer would select among the four convex
regions. Note that we are now able to attain
100% classification accuracy with the ANN
model.

Research has shown that an ANN with two
hidden layers can approximate a particular set
of functions to a given accuracy (Cybenko,
1988; Lapedes and Farber, 1987). Research has
also shown that it is possible to use a single
hidden layer to approximate a continuous func-
tion and achieve the desired accuracy
(Cybenko, 1989; Hecht-Nielsen, 1990; Hertz et
al., 1991; Hornik et al., 1989). Since a single
hidden-layer model is less complex, most
researchers have favored these over two hidden
layer models. We were not able to find any
references in the literature when more than two
hidden layers were used. Thus, we will limit
the discussions in this paper to one and two
hidden-layer models.

Networks that contain feedback connections
are said to be recurrent. Recurrent networks
recirculate previous outputs back to the inputs,
similar to the concept of using lagged variables
in forecasting. The recurrent feature of an ANN
inherently considers the moving average factor
in a time series and outperforms a multi-
layered network (Jhee and Lee, 1993). However,
most ANN applications in accounting and
finance have employed a multi-layer, feed-
forward architecture.

Linear versus Non-linear Models

As discussed above, an ANN with no hidden
layers is similar to a generalized linear model.
Feedforward ANNs with hidden layers are a
subset of the larger class of non-linear
regression and discrimination models. Gener-
ally, one chooses a non-linear model over a
linear model when the underlying relationships
between the variables are either known to be
non-linear, or are not known, a priori.

Linear economic models are not able to cap-
ture non-linear patterns and trends in the



relationships between and within most econo-
metric predictor variables used in accounting
and finance research. For example, a time series
can be broken down into four components:
secular trend, cyclical variation, seasonal fluc-
tuation and irregular fluctuation. The irregular
fluctuation can be further divided into deter-
ministic chaotic behavior and stochastic noise.
Conventional linear techniques cannot dis-
tinguish between these two sub-components of
random noise and non-linear relationships
(Wong, 1991).

Austin et al. (1997) used an ANN to identify
mathematical relationships between current
values of macroeconomic and financial vari-
ables and future stock market valuations. They
found that linear economic models were not
able to capture non-linear patterns and trends
in the relationships between and within stock
and bond price movements. The linear tech-
niques could not distinguish between random
noise and non-linear relationships.

When applied to classification tasks, ANNs
have the ability to induce algorithms for reco-
gnizing patterns. Thus, the knowledge base is
inferred from the facts presented to train the
network. The disadvantage, however, is that
these networks do not have facilities to explain
how a conclusion is reached. Hence, they are
best suited for rather straightforward discrimi-
nation and classification problems involving
complex relationships. Curram and Mingers
(1994) found that ANNs provided better classi-
fication rates than linear discriminant analysis
on data sets that were non-linear, but were
generally slightly worse where the data were
linearly separable. When using real data where
the degree of non-linearity is often not known,
they suggest using both methods and compar-
ing the performance.

A limitation of using financial ratios with
linear discrimination models is that the ratio
must provide a dichotomous signal. For
example, a ratio value above or below a given
threshold must always signal financial distress.
In practice, a ratio may signal distress both
when it is higher than normal and when it is
lower than normal (Coats and Fant, 1993). So
in these situations, ANNs may provide a better
model to capture the underlying relationships
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between the financial ratios and the depen-
dent variable.

In general, an ANN should not be used to
model inherently linear relationships. At best,
the ANN will turn out to be a far more com-
plex and cumbersome approach to achieve
comparable results. ANNs should be applied
when there is some evidence of non-linearity
in the relationships between the dependent and
explanatory variables.

Parametric versus Non-parametric

Parametric models, and regression models in
particular, have become abused statistical
methods. Tests are routinely performed and
inferences made without verifying normality of
errors, independence of errors and constancy
of error variance (Marques et al., 1991). ANNs
can be used as parametric models. Previous
research has shown that back-propagation will
minimize the least squared error if (1) the
model does not get trapped in a local optimal
and (2) there are an adequate number of nodes
in the hidden layer. If an ANN is used as a
parametric model, the same sort of distri-
butional assumptions are required for error
terms as for a statistical model. These distri-
butional assumptions of noise that is inde-
pendent between each case and normally dis-
tributed with equal variance affect the ability
to make statistical inferences about the results.

However, ANNs applied as non-parametric
models can easily incorporate multiple sources
of evidence without simplifying assumptions
concerning the functional form of the relation-
ship between output and predictor variables.
In many cases, the predictor variables are not
normally distributed and customary transform-
ations have been unsatisfactory. Markham and
Ragsdale (1995) found that the data typically
used in the study of bank failures did not fit
normal distributions even after data transform-
ations. When such statistical assumptions
(distribution, independence of multiple fea-
tures, etc.) are not valid, an ANN that does
not rely on these assumptions provides better
generalization properties and seems to be better
suited to handle small sample problems (Niles
et al., 1989).



Parametric statistical models require the
developer to specify the nature of the functional
relationships between dependent and inde-
pendent variables. ANNs use the data to
develop an internal representation of the
relationship between the variables so that a
priori assumptions about underlying parameter
distributions are not required. Thus, better
results would be expected from the ANN if
the known relationships between the variables
do not fit the appropriate parametric statisti-
cal model.

Most parametric models require that the
input variables be linearly separable. That is,
no two input variables can have similar influ-
ences on the dependent variables. When finan-
cial ratios and aggregate account balances are
used as input, this requirement can be easily
violated.

Within a parametric model, outliers in a data
set influence the size of the correlation coef-
ficient, the average value for a group, or the
variability of scores within a group. Univariate
outliers, cases that are extreme with respect to
one of the input variables, are relatively easy
to detect. There are situations where the outlier
is caused by the interaction of two or more
variables. These multivariate outliers are harder
to detect since the values for each individual
variable are within bounds (they were not
detected as a univariate outlier). There are
numerous aspects of an ANN that make them
more robust with respect to outliers (non-linear
transfer functions within each computational
unit, moving average weight adjustments, etc.).
Research has shown that ANNs are more
robust than regression when outliers are
present in the data (Marques et al., 1991; Subra-
manian et al., 1993).

In summary, ANNs applied as non-para-
metric models are not as constrained by distri-
bution-related requirements as most traditional
statistical models. The non-parametric ANN
model may be preferred over traditional para-
metric statistical models in those situations
where the input data do not meet the assump-
tions required by the parametric model, or
when large outliers are evident in the dataset.
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Selection Criteria

Most ANNs used in the accounting and finan-
cial literature have been applied as statistical
methods, not as artificial intelligence techniques
that attempt to mimic the basic architecture
and functioning mechanisms of the human
brain. We consider an ANN as a non-linear
statistical method that offers certain advantages
over its parametric counterparts. As such, the
first fundamental decision that should be made
by a researcher is whether it is appropriate to
use an ANN to solve accounting and finance
problems, as opposed to a traditional para-
metric statistical model.

DETERMINE APPROPRIATE PARAMETRIC
MODEL

As a first step, the researcher should determine
the research question being asked and the
appropriate parametric modeling approach that
would be used if all the underlying assump-
tions were valid. Tabachnick and Fidell (1983)
offer a classification scheme relating research
questions to the appropriate parametric models.
We have extended this classification scheme to
distinguish the nature of the output variable(s)
(continuous versus discrete). We have also cate-
gorized ANN applications to accounting and
finance problems according to this scheme (see
Table 1).

The first category assesses the strength of
the relationship between the input and output
variables. The greater the strength of the
relationship, the greater ability to predict the
value of the output variable. When the output
variables are continuous, the traditional para-
metric models applied to answer these research
questions have been regression-based and
econometric approaches (Box–Jenkins ARIMA).
The accounting and finance problems which
fall into this category include the application
of forecasting techniques to stock prices and
other market-related indicators, cost estimation,
and other managerial forecasting studies. When
the output variables are discrete, then logistical
regression models must be applied. However,
the accounting and finance studies which have



Table 1 Classification scheme for research questions

Research Type of Parametric
question type output model Accounting and finance ANN application

Assess Continuous Regression
I Stock price and market-related studies (White, 1988; Kamijodegree of

Econometric and Tanigawa, 1990; Kimoto et al., 1990; Yoon and Swales,relationship
approaches 1991; Bergerson and Wunsch, 1991; Wong, 1991; Trippi and(forecasting,

(Box–Jenkins De Sieno, 1992; Kryzanowski et al., 1993; Grudnitski andpattern
ARIMA). Osburn, 1993; Charitou and Charalambous, 1995; Austin etrecognition)

al., 1997; Kohara et al., 1997)
I Cost estimation (Hoyt and Lay, 1995)
I Analytic review (Coakley and Brown, 1993; Coakley, 1995)
I Bankruptcy (Udo, 1993)
I Managerial forecasting studies (Jhee and Lee, 1993; Choi

et al., 1997)

Discrete LOGIT See Two-group classification
Predict group Discrete LOGIT Two-group classification studies:
membership I Predictions of management fraud (Fanning et al., 1995;

Discriminant(two group Green and Choi, 1997; Fanning and Cogger, 1988)
functionsand multiple I Auditor’s going concern uncertainty opinion (Hansen and

group Messier, 1991; Coats and Fant, 1993; Lenard et al., 1995;usually
classification) Anandarajan and Anandarajan, 1999)includes tests

I Bank failures (Bell et al., 1990; Chung and Tam, 1992; Tamof statistical
and Kiang, 1992; Subramanian et al., 1993; Merkham andsignificance
Ragsdale, 1995; Bell, 1997; Etheridge and Sriram, 1997)and the

I Bankruptcy (Boucher, 1990; Raghupathi et al., 1991;evaluation of
Salchenberger et al., 1992; Odom and Sharda, 1992; Brocketthe various
et al., 1994; Fanning and Cogger, 1994; Wilson and Sharda,predictor
1994; Boritz et al., 1995; Boritz and Kennedy, 1995; Huangvariables
et al., 1994; Barniv et al., 1997; Jo et al., 1997)

I Credit evaluation and underwriting (Collins et al., 1988;
Reilly et al., 1991; Jensen, 1992; Grudnitski et al., 1995;
Torsun, 1996)

I Bond ratings (Dutta and Shekhar, 1988; Surkan and
Singleton, 1991)

Multiple-group classifications:

I Bond ratings (Kwon et al., 1997; Daniels et al., 1997;
Maher and Sen, 1997).
Prediction of group membership only

Assess Continuous Principal Traditional parametric techniques in this category were
underlying components applied to achieve data reduction.
structure analysis

ANN models with Hebbian learning are closely related to
Factor principal components analysis.

analysis
No studies were found that applied ANN models in this
category

Discrete Cluster I Prediction of bank failures (Etheridge and Sriram, 1997)
analysis Categorical Learning ANN was used but results were

compared with logit and discriminant analysis rather than a
k-means clustering algorithm.

I Bankruptcy (Chen et al., 1995; Serrano-Cinca, 1996).
Kohonen networks are very similar to k-means cluster
analysis.

Copyright  2000 John Wiley & Sons, Ltd. Int. J. Intell. Sys. Acc. Fin. Mgmt. 9, 119–144 (2000)

125ARTIFICIAL NEURAL NETWORKS IN ACCOUNTING AND FINANCE



Table 1 Continued

Research Type of Parametric
puestion type output model Accounting and finance ANN application

I None found

Significance Limitations of the ANN models is the computationalContinuous ANOVA
of group complexity required to assess the effect of an input variable

differences Discrete PROBIT on the output variables

Note: A short summary of each study cited in this table can be found in Coakley et al. (1995).

used logistic regression have focused more on
the two-group classification problem and are
included as classification studies.

The second category measures the degree to
which group membership can be predicted
from the various input variables. The groups
act as discrete levels of the output variable
(hence there are no comparable models for con-
tinuous output variables). This type of research
question is analyzed with logistic regression
and discriminant functions, and usually
includes tests of statistical significance and the
evaluation of the various predictor variables.
The ANN models focus on the prediction of
group membership only. We further subdivide
the accounting and finance studies in this cate-
gory into two-group and multiple-group classi-
fication problems. The two-group classification
studies include predictions of management
fraud, the auditor’s going concern uncertainty
opinion, bank failures, bankruptcy, and credit
evaluation and underwriting. The studies on
predicting bond ratings range from two-group
classification to multiple-group classifications.

The third category deals with finding an
underlying structure inherent in a set of finan-
cial data. These types of problems are answered
with principal components analysis (and factor
analysis) when the output variables are con-
tinuous, and cluster analysis when the output
variables are discrete. ANN models with Hebb-
ian learning are closely related to principal
components analysis. In the accounting and
finance literature, the traditional parametric
techniques in this category were applied to
achieve data reduction. We did not find any
studies where these type of ANN models were
applied to accounting and finance problems,
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although determining the information content
of financial statements seems a likely candidate.

There were two studies that applied Kohonen
networks to perform k-means cluster analysis.
Although Etheridge and Sriram (1997) did
apply a Categorical Learning ANN, the study
focused on the prediction of bank failures and
the results were compared with logit and discri-
minant analysis (versus a k-means clustering
algorithm). Chen et al. (1995) evaluated bank-
ruptcy data and found that the Self Organizing
Map achieved higher classification accuracy
than conventional clustering methods (84.8%
compared to 54.3%). Serrano-Cinca (1996)
applied a Self Organizing Feature Map to clus-
ter firms into zones of bankruptcy, zones of
solvency, and a zone of doubtful insolvency.
This zone of doubtful insolvency contained the
firms that were mis-classified in previous stud-
ies using the same data set (Odom and Sharda,
1992; Wilson and Sharda, 1994). In addition
to improved classification accuracy, the SOFM
provides graphic output depicting the risk of
bankruptcy and the financial characteristics of
the firm.

The final category measures the significance
of group differences. The emphasis is on infer-
ring population differences among groups. The
classic parametric model is Analysis of Variance
(ANOVA) when the output variable is continu-
ous, and PROBIT when the output variable is
discrete. One of the limitations of the ANN
models is the computational complexity
required to assess the effect of an input variable
on the output variables. To date, there are
no known attempts to apply ANN models in
this manner.



Validate Underlying Assumptions

Once the nature of the research question has
been established, and the appropriate para-
metric model is determined, the next step is to
validate the underlying assumptions for the
parametric model.

(1) If the validity of these assumptions is ques-
tionable, then an ANN may provide bet-
ter results.

I When applied to determine the degree of
relationships with continuous outputs,
ANNs have been shown to outperform
ARIMA (Choi et al., 1997), and multiple
regression (Kohara et al., 1997; White, 1988).

I When applied to determine the degree of
relationships with discrete outputs (two-
group classifications), ANNs have been
shown to produce lower type I errors (e.g.
0.13 for ANN, 0.536 for logit and 0.533 for
discriminant analysis), but also higher type
II errors (0.09 for ANN, 0.012 for logit and
0.014 for discriminant analysis). In general,
the combined type I and II errors are lower
for the ANNs over the other methods. How-
ever, the comparison of the methods
becomes dependent on the relative cost of
the type I versus type II errors (Etheridge
and Sriram, 1997).

(2) If complex non-linear relationships are
expected between the predictor variables,
then a non-linear ANN should provide bet-
ter results than a linear model. If the non-
linear relationships do not exist, the ANN
results should be similar to linear model
results (Charitou and Charalambous, 1996).

(3) Marques et al. (1991) suggest that ANNs
will perform better than their parametric
counterparts under conditions of high noise
and low sample size. The ANNs become
less competitive when there is low noise or
large samples. Slightly different results
were obtained by Markham and Rakes
(1998). Using simulated data, they com-
pared linear regression and ANN models
across 20 datasets varying the sample size
and the variance in the error. With low
variance, linear regression outperformed
ANN models across all sample sizes. With
high variance, ANN models were better.
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With medium variance, regression perfor-
med better with small sample sizes, while
ANNs performed better with large sample
sizes.

(4) With respect to classification problems,
ANNs perform better as the number of
variables and groups increase, and are more
robust to changes in sample size and pro-
portion (Subramanian et al., 1993).

If the underlying distributional properties of
the data are not known a priori, it is rec-
ommended that both ANN and parametric
models be developed and compared. The use
of an ANN model does not guarantee better
results over a parametric model. Poor perform-
ance with both models could indicate the lack
of a deterministic relationship between inputs
and outputs. In general, failures in ANN per-
formance can be attributed to the use of an
inadequate learning algorithm, the use of an
inappropriate model and/or architecture, inva-
lid data representation to the model, or inad-
equate training of the network. These factors
are discussed in the next section.

DEVELOPMENT OF THE ANN MODEL

Once the decision to use an ANN is made, the
researcher faces numerous decisions including
selection of the learning algorithm, choice of
the error and transfer functions, specification
of the architecture, preparation of the data to
match the architecture, and training of the net-
work.

Selection of the Learning Algorithm

ANNs effectively filter input to produce output.
More specifically, an ANN looks for patterns
in a set of examples applied to the input layer
of the network, and learns from those examples
to produce new patterns, the output. Knowl-
edge within the ANN is maintained in the
weights. The process of learning is imple-
mented by changing the weights until the
desired response is attained at the output
nodes. In an ANN with linear transfer func-
tions, the weights can be derived using matrix



manipulation (much like solving the general
linear model). In an ANN with non-linear
transfer functions, two learning mechanisms
can be used to derive the weights: unsuper-
vised learning and supervised learning.

Unsupervised learning is analogous to a cluster
analysis approach. The network self-organizes
to identify the salient properties of the input
data set. The input patterns are classified
according to their degree of similarity, with
similar patterns activating the same output pat-
tern.

Supervised learning accepts input examples,
computes the output values, compares the com-
puted output values to the desired output
values (termed target values), and then adjusts
the network weights to reduce the difference
(error). The learning process is repeated until
the difference between the computed and target
output values are at an acceptably low value.

The most common supervised learning algor-
ithm is back-propagation. Back-propagation
employs a gradient-descent search method to
find weights that minimize the global error
from the error function. The error signal from
the error function is propagated back through
the network from the output layer, making
adjustments to the connection weights that are
proportional to the error. The process limits
overreaction to any single, potentially inconsist-
ent data item by making small shifts in the
weights. A complete description of the algor-
ithm and its derivations can be found in numer-
ous sources, including Hertz et al. (1991) and
Rumelhart et al. (1986).

The commonly cited disadvantages of the
back-propagation learning algorithm are that
the training time usually grows exponentially
as number of nodes increases, and there are
no assurances that a global minimum will be
reached. The use of partial derivatives in gradi-
ent descent algorithm makes the assumption
that the error surface is locally linear. At points
of high curvature this linearity assumption does
not hold and divergent behavior might occur.
To compensate for this possibility, an infini-
tesimally small step size (learning rate) must
be used to guarantee asymptotic convergence
to a minimum point.

But, small learning coefficients lead to slow
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learning. The momentum factor (delta weight)
was added to back-propagation algorithm to
act as a low-pass filter on the weight adjust-
ment terms. General trends are reinforced
whereas oscillatory behavior cancels itself out.
It allows a low learning coefficient with faster
learning. But, incorrect specification of these
parameters (learning rate and momentum term)
can lead to either extremely slow convergence
or to oscillatory behavior without convergence.

One technique suggested to speed up learn-
ing is the use of the conjugate-gradient algor-
ithm. This algorithm uses the second derivative
of the error function to exploit information
regarding both the slope and curvature of the
response surface. When compared to back-
propagation, the conjugate-gradient algorithm
has been shown to produce comparable results
with much faster training times (Charitou and
Charalambous, 1996; Wong, 1991).

A major drawback of the gradient descent
algorithms is that there is no way of determin-
ing in advance whether the architecture and
selected methods will converge. Real error sur-
faces, with multiple weight dimensions, tend
to have very complex features including dents
and ravines. Although the gradient-descent
method always follows the steepest path
towards the bottom of the error surface, it may
get stuck within a large dent or ravine on the
side of the surface. Numerous methods are
available to compensate for this tendency to
find local (non-optimal) minima. Some methods
adjust the weight derivation process to main-
tain the momentum established by previous
adjustments. Other methods involve starting
from a different point on the error surface
(using a different set of initial weights) and
ensuring that the results are similar. Still other
methods involve the dynamic adjustment of
the network architecture (trimming nodes or
connections between nodes).

Evolutionary programming is a stochastic
optimization technique that has been used in
accounting and finance problems as an alterna-
tive to the conventional gradient methods.
Evolutionary programming involves two pro-
cesses—mutation and selection. The algorithm
starts with an original population of weight
sets that are evaluated by examining the corre-



sponding outputs. Random mutation of the par-
ents creates new solutions. Specifically, a Guas-
sian random variable with mean zero and
variance equal to mean squared error of the
parent perturbs each weight and bias term.
Each offspring is evaluated, and the n ‘best’
solutions are retained (selected) as parents for
the next iteration.

Genetic algorithms extend this mutation and
selection process by adding a recombination
phase to create the child nodes that are evalu-
ated. Each child is formed as a cross between
two parents, hence the term ‘crossover’. Gold-
berg (1994) cites numerous advantages of gen-
etic algorithms: they can easily solve problems
that have many difficult-to-find optima, they
are noise tolerant, and they use very little prob-
lem-specific information. They work with the
coding of the parameter set, not the specific
values of the parameters. The major disadvan-
tage cited for genetic algorithms is the difficulty
in specifying the optimal parameter settings for
the model.

A genetic algorithm was used by Huang et
al (1994) to predict financially distressed firms
using unbalanced groups (the group of finan-
cially distressed companies represents less than
3% of the population). The ANN clearly domi-
nated discriminant analysis and Logic methods
applied to the same data set. Levitan and Gupta
(1996) applied a genetic algorithm to the cost
driver optimization (CDO) problem in activity-
based costing. CDO is a combinatorial optimiz-
ation problem that is NP-hard. Compared to
a greedy algorithm proposed by Babad and
Balachandran to solve the CDO problem, the
genetic algorithm was less complex (used fewer
cost driver parameters) and calculated more
accurate costs.

Genetic algorithms have been demonstrated
as possible techniques to aid in the develop-
ment of the ANN model. Back et al. (1996)
used a genetic algorithm to select the best input
variables for an ANN model applied for bank-
ruptcy prediction. Hansen (1998) demonstrated
the use of a genetic algorithm to find the most
effective ANN architecture.

Optimal Estimation Theory has also been
applied to accounting and finance problems
as an alternative learning algorithm to back-
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propagation. Optimal Estimation Theory (OET),
introduced by Shepanski (1988), uses a least
squares estimator to calculate the optimal set
of connection weights for the presented training
set. This method significantly reduces the time
required to train a network, but requires having
the same number of nodes in the input and
hidden layers. This method was used by Boritz
et al. (1995) to predict bankruptcy filings. They
compared the performance of the OET algor-
ithm with back-propagation, and found mixed
results. In general, when the numbers of bank-
rupt vs. non-bankrupt firms in the training sets
were equal, the back-propagation algorithm
provided higher classification accuracy. How-
ever, Boucher (1990) also used training data
sets with equal numbers of bankrupt and non-
bankrupt firms and found that the OET algor-
ithm provided higher overall classification accu-
racy than the back-propagation algorithm.

It appears that the OET algorithm does train
faster, but it is not known whether it achieves
similar performance. The discussion below on
network size suggests that the requirement to
maintain a fixed number of nodes in the hidden
layer may be a limitation of the OET algorithm.
Larger or smaller networks trained with the
back-propagation algorithm may achieve bet-
ter results.

In a survey of ANNs in business, Velido et
al. (1999) found that the gradient descent back-
propagation model dominated other methods
(of 92 reported papers, 74 used back-
propagation). Given the often-cited disadvan-
tages of this approach, it still seems to be the
favored one. The algorithm is intuitively sim-
ple, and applications incorporating back propa-
gation are freely available on numerous web
sites. In addition, researchers have seen a ten-
fold increase in processing power at the
desktop in the past decade that may have
diminished some of the previous concerns
regarding slow training. Back-propagation will
be the focus in the remainder of this paper.

Choice of the Error and Transfer Functions

Error Functions
The sum-of-squared-error (SSE) error function
is the one most widely applied in the account-



ing and finance literature. Since the SSE func-
tion is differentiable and minimized when its
arguments are equal, the resulting error surface
(in three dimensions) looks like a bowl. The
bowl’s bottom corresponds to the set of weights
that produce the minimum error. At any given
point on the bowl’s surface, the derivative of
the error function provides the slope of the
surface with respect to the weights. To minim-
ize the error, the weights are adjusted to move
down the slope towards the bowl’s bottom.
The SSE function uniformly weights each train-
ing trial error in accordance with the square of
the magnitude of the error vector (Target 2
Output). This error-measurement scheme
ensures that large errors receive much greater
attention than small errors. Also, the SSE takes
into account the frequency of occurrence of
particular inputs. It is much more sensitive to
errors made on commonly encountered inputs
than it is to errors on rare inputs (Hecht-
Nielsen, 1990).

However, any differentiable function of the
target and output variables, F(T, O), that is
minimized when its arguments are equal could
be used as an error function in the back-propa-
gation model. The more important consider-
ation is that the error function should reflect
the statistical nature of the original data as well
as any assumptions about measurement errors.

Coakley (1995) proposes that an alternative
error function that maximizes the relative
entropy between the input data streams may
be more appropriate for classification tasks.
This error function, based on information
theory and proposed by Hertz et al. (1991),
involves learning the correct probabilities of a
set of hypotheses represented by the output
unit. Information theory is applied to derive
the expected information content of an input
signal, which is expressed as a conditional like-
lihood function. The entropy error function is
formed by maximizing the conditional likeli-
hood function, and corresponds to the
maximum conditional likelihood function com-
monly used in Logit analysis (Loh, 1992;
Palepu, 1986). The maximum conditional likeli-
hood function is appropriate for dichotomous
output variables. As a result of using the
entropy error function, the ANN will place
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more weight on those signals that produce
complementary information, and less weight
on those signals that provide redundant or
conflicting information.

Transfer Functions
The transfer function is used to derive the
output of a node given its weighted-adjusted
input. The use of linear transfer functions
requires that the input patterns be linearly inde-
pendent. If non-linear transfer functions are
used, linear independence of the input patterns
is not required. Thus, non-linear transfer func-
tions allow ANN models to be applied to a
wider range of problems (Hertz et al., 1991).

Four non-linear transfer functions have been
proposed in the literature for use with ANN
models: sigmoid (logistic), half-sigmoid, sine
(or cosine), and hyperbolic tangent (see Ander-
son and Rosenfeld, 1988; Hecht-Nielsen, 1990;
Hertz et al., 1991; Lawrence, 1991; Rumelhart
and McClelland, 1986; Stornetta and Huber-
man, 1987; Waite and Hardenbergh, 1989;
Wasserman, 1989). We did not find any
accounting and finance papers that reported
the use of the sine transfer function, so have
excluded that function from the analysis.

The sigmoid function (equation (3)) is a
bounded differentiable real function that is
defined for all real input values and has a
positive derivative everywhere. As depicted in
Figure 4, the sigmoid is a semi-linear function
that makes a rapid yet smooth transition from
a nearly proportional center section to the
upper and lower limits. The sigmoid function
is centered at 0.5, and provides an output range
of zero to one.

g(h) 5 (High – Low) / (1 1 exp(2Gain * (h (3)
2 Center))) 1 Low

where:

I High is the upper limit for the output.
I Low is the lower limit for the output.
I Center is the value of the input at which the

output is equal to (High 1 Low)/2.
I Gain is directly proportional to the derivative

of the function at the Center point. With
high gain (Gain .. 1), the sigmoid function
approximates a step function, while at low



Figure 4 Comparison of sigmoid, Half-Sigmoid and
hyperbolic tangent Transfer functions

gain (Gain ,, 1) it approximates a linear
function.

I h is the sum of the weighted connections.

Stornetta and Huberman (1987) suggest that
the conventional sigmoid function may not be
optimal for all data sets. With the back-propa-
gation algorithm, the magnitude of a weight
adjustment at a particular node is proportional
to the output level of that node. With a sigmoid
function, it is possible to get an output value
of zero from a node. These appropriate output
values would result in no weight modification.
They propose an alternative that changes the
output range of the sigmoid transfer function
by adding a bias of −.. Thus in equation (3),
the High and Low values would be set to
(0.5, −0.5) respectively. This modified sigmoid
function, commonly termed the ‘Half-Sigmoid’,
places less weight on those data values close
to the mean, yet provides an improved capa-
bility for explaining those input data values
close to the lower bound. Note in Figure 4 that
the Half-Sigmoid function is centered at zero
and has a range of 6..

Another alternative is to use the hyperbolic
tangent function (equation (4)). Like the half-
sigmoid, it is centered at zero. However, the
range for the output values is wider (61 versus
6.). This function is more linear in nature and
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produces an effect similar to truncating outliers
in a linear model.

g(h) 5 tanh(h)

Coakley et al. (1992) compared the perform-
ance of these three transfer functions when
used in a multi-layer, feed-forward, back-
propagation network. The study was limited to
evaluating the forecasting performance of the
ANN when applied to a computer-generated
time series with seasonal variations and ran-
dom noise. In general, they found that the
hyperbolic tangent transfer function had faster
convergence and slightly better predictive accu-
racy than the sigmoid and half-sigmoid func-
tions. There were no consistent differences
between the sigmoid and the half-sigmoid func-
tion in terms of either performance or speed
of convergence.

For an ANN with no hidden layers and a
linear transfer function, Brown et al. (1993)
present a theoretical explanation for why learn-
ing is faster when the input values are in the
range -b to b rather than 0 to b. They extend
their arguments to suggest that the use of the
hyperbolic tangent transfer function in the hid-
den layer of an ANN is also better.

Selection Considerations
There are no clear criteria regarding which
transfer function to use. The best guidance that
can be offered is to consider how the transfer
function relates to the error function. To solve
the back-propagation algorithm, the weights in
the network must be adjusted to minimize the
error function. Using the gradient-descent
method, the change in the weights (DWji ) is
derived from the derivative of the error func-
tion E with respect to the weights Wji (equation
(5)). For the derivations presented here,
subscript j refers to processing units in the
output layer, subscript i refers to the processing
units in the input layer, and there are no hid-
den layers in the model. The equations for the
output processing units do not change in form
if hidden layers are added to the model. In
that case, the subscript i would refer to the
processing units in the hidden layer immedi-
ately preceding the output layer:



DWji 5 2h
­E

­Wji
(5)

where:

I Eta (h) is the learning coefficient
I E 5 f(Target Value 2 Output Value), f any

function with characteristics discussed in the
following section

I Output Value 5 g(Si [Wji * Ai] ) (from equa-
tions (1) and (2))

Equation (5) is easier to solve with certain
combinations of transfer function and error
function. For example, the sigmoid transfer
function and sum-of-squared-error error func-
tion combination provide a simple solution, as
do the combination of the hyperbolic-tangent
transfer function and relative-entropy error
function.

With the SSE error function, the partial
derivative in equation (5) has a tendency to
bound the maximum values of the weights. As
Figure 5 depicts, the adjustment to the weights
will tend to zero when the target and predicted
values are equal, as expected, but will also be
zero when the target and predicted values are

Figure 5 Delta for SSE error function
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at the extreme opposites (target 5 0, predicted
5 1 for the sigmoid case).

One interesting difference to note in the two
graphs in Figure 5 is the relative values of the
delta weights. For the sigmoid function, the
delta weight values range from 20.15 to 10.15.
For the hyperbolic tangent function, the values
range from 21.2 to 11.2. This difference has
caused some researchers to recommend the sig-
moid function for classification problems that
involve learning about average behavior, and
the hyperbolic tangent function if the problem
involves learning about deviations from the
average (such as forecasting). This difference in
delta weight values also becomes extremely
important when the learning coefficient and
momentum factors are set. Lower values need
to be used if the hyperbolic tangent transfer
function is to be used (Coakley et al., 1992).

For the entropy error function, a different
story emerges. For the sigmoid transfer func-
tion, the delta weight is only bounded when
the predicted value approaches zero (top panel
in Figure 6). When combined with the hyper-
bolic tangent transfer function, the delta weight
adjustment is linear (bottom panel in Figure 6).

Figure 6 Delta for entropy error function



The adjustment is still zero when the target and
predicted values are equal, but the adjustment
increases linearly as the difference between the
target and predicted values increase. The impli-
cation is that if the learning coefficient and
momentum adjustment factors are incorrectly
specified, the ANN model will blow up very
early in the training process.

Specification of the ANN Architecture

Determining the appropriate ANN architecture
is not a simple, straightforward task. Since
numerous alternative architectures exist, the
first task is to determine which architecture is
appropriate for the problem. Most of the
research in accounting and finance has used
the multi-layer, feed-forward model. Thus, our
discussion will be limited to this architecture.

Input and Output Layers
With the feed-forward architecture, the inter-
face with the environment usually establishes
the number of processing nodes in the input
and output layers. For example, many authors
(Boritz et al., 1995; Boucher, 1990; Coats and
Fant, 1993) used an ANN to perform financial
distress classifications based on the Altman
(1968) model. Since the Altman model uses five
financial ratios, each of these ANN architec-
tures has a five-node input layer and a single-
node output layer that represents the dichot-
omous classification of distressed vs. non-
distressed.

When applied for forecasting, the number of
input nodes corresponds to the number of
lagged observations used to discover the under-
lying time-series patterns. This is a very critical
decision since it captures the complex autocor-
relation structures in the data. According to
Zhang et al. (1998) there is systematic way to
determine the number of lagged variables to
include. They report that a number of studies
are using genetic algorithms to determine the
optimal input architecture.

The number of output nodes to use is not
always straightforward. For example, Yoon and
Swales (1991) used a model with one output
node for distressed firms and a second output
node for non-distressed firms. This does add
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additional information in that the network can
distinguish firms that exhibit characteristics that
are clearly associated with distressed firms,
firms that exhibit characteristics that are clearly
associated with non-distressed firms, and firms
that exhibit characteristics that are associated
with both. In the multiple-group classification
problem of predicting bond ratings, Kwon et
al. (1997) used a single output node for each
bond rating category (for a total of five nodes
in the output layer) while Maher and Sen (1997)
used a single output node to distinguish the
six ordinal bond rating categories. Since the
data sets are different, it is difficult to do direct
comparison of the results. But both models
reported similar classification accuracy, and
each model outperformed its parametric
counterpart (multiple discriminant analysis in
the Kwon study and logit in the Maher and
Sen study).

Internal Architecture
Specifying the internal architecture requires
determining the number of hidden layers, and
the number of processing nodes in each hidden
layer. These two parameters affect the overall
performance of the ANN, and usually vary
from one implementation to the next.

The ability of a multi-layer network to rep-
resent non-linear models has been established
through an application of an existence theorem
proved by Kolmogorov (1963) and restated for
back-propagation neural networks by Hecht-
Nielsen (1990). Additional research applied this
general theorem to the back-propagation multi-
layer feed-forward model:

I At most two hidden layers are needed to
approximate a particular set of functions to
a given accuracy (Cybenko, 1988; Lapedes
and Farber, 1987). The arbitrary accuracy is
obtained by including enough processing
nodes in each of the hidden layers. Research
suggests that an architecture with n input
data streams will require at most (2n 1 1)
processing nodes per hidden layer to achieve
the desired accuracy (Cybenko, 1989; Hecht-
Nielsen, 1990; Hertz et al., 1991; Hornik et
al., 1989).

I It is possible to approximate a continuous
function that may achieve the desired accu-



racy with a single hidden layer (Cybenko,
1989; Hecht-Nielsen, 1990; Hertz et al., 1991;
Hornik et al., 1989). Extra hidden layers are
detrimental due to the increased processing
requirements to train and evaluate the
model. Therefore, an architecture with a sin-
gle hidden layer would be preferred as long
as the desired accuracy can be obtained.

I A rule of thumb for obtaining good gen-
eralization from a network is to use the
smallest system that will fit the data (Reed,
1993). One approach is to train successively
smaller networks until the smallest one is
found that will adequately learn the data.
However, these smallest feasible networks
tend to be sensitive to initial conditions and
learning parameters and may be more likely
to become trapped in local minima. So Reed’s
recommended approach is to train a network
that is larger than necessary and remove
parts that are not needed. Determining which
parts are not needed is usually a trial and
error process. Parts are selected for removal
using a heuristic (e.g. remove the node with
the smallest sum of weights). The smaller
network is then tested to see if it continues
to produce acceptable results. The process is
similar to the ‘Backward Elimination Pro-
cedure’ used with regression models. The
large initial size allows the network to learn
reasonably quickly with less sensitivity to
initial conditions while the reduced com-
plexity of the trimmed system favors
improved generalization.

These recommendations for smaller networks
can be substantiated with a comparison of
results between Curram and Mingers (1994)
and Hart (1992). Both studies used similar data
sets. Hart (1992) achieved a 29% error rate with
a 20-hidden-node network while Curram and
Mingers (1994) attained a 26% error rate with
a 10-hidden-node network. This suggests that
Hart’s results may be subject to overfitting of
the data caused by using more hidden nodes
than necessary.

When applied for classification tasks, the
ANN architectures should have fewer nodes in
the hidden layer than in the input layer. The
rationale for this heuristic is conceptually sim-
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ple. If a Hebbian-learning ANN model was
developed with the same number of nodes in
the input, hidden and output layers, then at
convergence, the weights would resemble an
identity matrix. If only one node was used in
the hidden layer, the weights would become
collinear with the principal eigenvector of the
input data. Having fewer nodes in the hidden
layer than in the input layer creates a bottle-
neck that forces the model to perform data
compression, and the resulting weights capture
the principal components that form the basis
for many parametric methods (Diamantaras
and Kung, 1996).

Subramanian et al. (1993) recommend that
the number of nodes in a single hidden layer
should range from k to n11, where k is the
number of output nodes and n is the number
of input variables. Another rule of thumb is
that the number of nodes in the middle layer
should be 75% of the number of nodes in the
input layer (Salchenberger et al., 1992). Gener-
ally speaking, too many nodes in the middle
layer (too many connections) produce a net-
work that memorizes the input data and lacks
the ability to generalize. Patuwo et al. (1993)
also found that the number of nodes affected
the classification accuracy. As the number of
nodes decreases, the average classification rate
decreases in the training sample but increases
in the test samples. Thus, increasing the num-
ber of nodes in the middle layer will degrade
the network’s ability to classify outside the
training set (overfitting). Hence, excess nodes
in the hidden layer will reduce the ability of
the network to generalize.

Another consideration is that as the number
of hidden nodes in a network is increased, the
number of variables and terms are also
increased. If the network has more degrees of
freedom (the number of connection weights)
than the number of training samples, there are
not enough examples to constrain the network.
This is similar to fitting a high-order poly-
nomial though a small number of points.

De Villiers and Barnard (1992) conducted
experiments comparing networks with one and
two hidden layers and the same total number
of connections (weights). Their results suggest
that there is no statistically significant differ-



ence between the optimal performance of net-
works with one or two hidden layers, that
networks with a single hidden layer do a better
classification on average, and that networks
with two hidden layers train easier if the num-
ber of nodes in each of the two hidden layers
is equal.

Masters (1994) has proposed a geometric pro-
gression rule to determine the number of nodes
in the hidden layers. If a single hidden layer
is used, then the number of nodes 5 sqrt(n*
m), where n 5 number of input nodes and m
5 number of output nodes. If two hidden lay-
ers are used, then first compute the parameter
r 5 (n/m)1/3. The number of nodes in the first
layer 5 mr2 and the number in the second
layer 5 mr.

Torsun (1996) used Masters (1994) geometric
progression rule to determine number of nodes
in the initial model, and then nodes were pro-
gressively deleted until the best performance
was attained. Since further pruning of a net-
work can lead to better generalization, they
continued by deleting weights that had the
least effect on the solution. The final ANN
achieved a classification accuracy of approxi-
mately 92%.

To overcome problems associated with the
‘trial and error’ approach to determining the
appropriate internal network architecture,
researchers have developed algorithms that
adaptively adjust the architecture during train-
ing. Most of the algorithms proposed in the
literature and applied to accounting and finance
problems have started small and added connec-
tions:

I Malakooti and Zhou (1994) have developed
an adaptive strategy algorithm which starts
with a small number of hidden nodes and
connections, then adaptively increases the
number of connections first, and the number
of nodes second, until the ‘proper’ topology
is obtained.

I Fahlman and Lebiere (1990) have developed
the Cascade-Correlation (Cascor) training
paradigm. Cascor begins with no hidden
nodes and then incrementally creates and
installs hidden nodes to improve the net-
work’s ability to categorize. Coats and Fant
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(1993) found several advantages of the
Cascor network: it determines its own size
and design, it retains the structure it has
built even if the training set changes, and it
does not require back-propagation of error
signals through the connections of the net-
work. This eliminates the need for human
trial and error experimentation to determine
the number of hidden nodes. They found
the Cascor network provided more effective
financial distress pattern classifications than
multiple discriminant analysis.

I Fanning and Cogger (1994) have developed
the Generalized Adaptive Neural Network
Architecture (GANNA) where the architec-
ture of the network is learned by trial and
error. This does not require a priori specifi-
cation of number of layers, numbers of
nodes, or other design choices. The GANNA
uses an evolutionary mechanism to grow net-
works, with new nodes added provided they
offer improvement.

Other examples, termed ‘pruning’ algorithms,
start with a large network and reduce the num-
ber of connections during training:

I Armstrong et al. (1991) provide a trimming
approach called the Adaptive Logic Network
(ALN). The ALN is a Boolean logic-based
tree framework that evolves by deleting
those branches that are not providing any
additional information. Fanning et al. (1995)
found that the ALN approach produced simi-
lar results as the GANNA processor, and
superior results to the Logit model, when
applied to detect management fraud.

I Jhee and Lee (1993) applied a weight-decay
technique that adds an extra term to the cost
function that penalizes network complexity.
This additional term pushes the smaller-
valued weights to zero while having minimal
impact on the larger-valued weights. In
essence, their algorithm deletes connections
within the model by freezing the value of
the weights to zero.

In conclusion, specification of the internal
architecture involves tradeoffs between fitting
accuracy and generalization ability. While
numerous expansion/pruning methods have
been proposed, these methods are usually quite



complex, difficult to implement, and cannot
guarantee selection of the optimum architec-
ture. Most of the heuristics that are offered
are based on simulations derived from limited
experiments. None of the heuristics works well
for all problems.

The design of an ANN is basically problem-
dependent and requires an experimental trial-
and-error approach. We do know that larger
architectures are required for complex response
surfaces, larger architectures are required (refer
back to Figure 3 earlier in the paper to visually
see the result of adding additional hidden
layers). Multiple-group bond rating classi-
fication is a complex problem. Papers address-
ing this problem have used large architectures.
Kwon et al. (1997) used an ANN with 41 nodes
in the input layer, two hidden layers with 25
and 15 nodes each, and 5 nodes in the output
layer. The Maher and Sen (1997) model used a
single hidden layer with 2n11 nodes. At the
other extreme, simple classification problems
can be modeled with relatively simple architec-
tures. Charitou and Charalambous (1996) used
9 nodes in the input layer, a single hidden
layer with 4 nodes, and one node in the output
layer to predict the sign of earnings change.

Preparation of the Sample Data

ANN training requires three sets of data: a
training set which must be representative of
the entire domain, an evaluation set which is
used to determine when the best generalization
ability has been obtained, and a test set which
is used to evaluate the prediction/classification
accuracy of the model. This tends to cause
problems in some accounting and financial
applications since the number of instances is
sometimes limited.

Sample Size

Baum and Haussler (1989) have estimated that
the minimum training set size required for typi-
cal classification tasks is N/I, where N is the
number of connections (non-zero weights) in
the network and I is the fraction of the test
examples that include incorrect classifications.
For the typical financial distress problem using
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the five Altman (1968) ratios, and a single layer
network with five nodes, there will be 36 con-
nections (presuming that a bias node is
included at both the input and hidden layer).
If a balanced set of training data is used, the
fraction of incorrect classifications will be 0.5,
suggesting that the training set should include
72 observations. Additional, independent obser-
vations will also be required in the evaluation
and testing sets.

Patuwo et al. (1993) found that sample size
in the training set affects the classification accu-
racy. As sample size increases, the average
classification rate decreases in the training sam-
ple but increases in the test samples. The
smaller the sample size, the easier it is for the
networks to adjust themselves to the idiosyn-
crasies of the individual observations in the
sample.

Data Transformations
It is generally recommended that the input data
for the ANN be manipulated to match the
input constraints on the transfer function. That
is, data is scaled such that the midpoint of the
data range is at the center of the transfer func-
tion, and the range of the input data is adjusted
to match the input range of the transfer func-
tion. For the commonly used sigmoid transfer
function, using an input data range of (0–1)
will scale the data to the midpoint and limit
the calculations in the initial iterations to the
near-linear portion of the function. With wider
input data ranges, those training samples at or
near the extremes will be clipped at the upper
or lower bound of the transfer function.
Eventually, the derived weights should com-
pensate for any differences between the input
data range and input range of the transfer
function. However, correct specification of the
input data range facilitates training of the
ANN.

Shanker et al. (1996) evaluated two data
transformation methods: linear transformation
to the zero to one range, and statistical stan-
dardization. They found that data standardiz-
ation improves classification rate but requires
more computation time. The improvement was
found to diminish as the network became large,
and as the sample size increased.



The range of the target (or known output)
values must be adjusted to lie within the output
range of the transfer functions in the output
layer. Otherwise the error function may have
local minima besides the global minima. Target
values at or near the boundary will cause satu-
ration of the network. Because non-linear trans-
fer functions have asymptotic limits, a very
large net input value is required to cause the
transfer function to produce an output value
that lies on the boundary. The algorithm will
attempt to adjust the weights to large values
to achieve the large net input value. A ‘better’
fit is usually obtained if the target values are
scaled to 90% of the output range of the trans-
fer function. So for the sigmoid transfer func-
tion, target values should be scaled into the
range of 0.05 to 0.95. However, if the ANN is
being use to predict group membership, scaling
the target values to the range of the transfer
function, in this case, 0 to 1, allows the output
from the network to be directly interpreted as
posterior probabilities.

Coding of Categorical Variables
For non-ordered categories, multiple variables
must be used (regardless of whether it is an
input or output variable). In parametric mode-
ling, all input variables must be linearly separ-
able. Thus, c categories must be coded with c-
1 variables. If the data has been coded with
‘effects coding’ for the associated parametric
model, then the same data can be used with
the ANN. ANNs are less sensitive to linear
combinations of the input data, so c categories
could be coded with c variables. Coding ordinal
categories with a single variable makes it easier
for the network to use the order of the category
to generalize.

Initializing Connection Weights
The initial connection weights must also be
specified prior to training. Generally, these
weights are randomly assigned within a pre-
specified range. Experiments by Wessels and
Barnard (1992) suggest that the initial training
weights should occupy the range of
63A/sqrt(N), where A is the standard deviation
of the inputs to the node and N denotes the
number of weights leading to a particular node.
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Results indicate that this method performs close
to optimally when the value of A is approxi-
mately one.

Training of the Network

Training of the ANN involves propagating the
error (generated from the forward processing
of the input training records) to adjust the set
of weights to minimize the error function. The
momentum factor in the algorithm acts as a
moving average of the weight adjustments.
Thus, if the error from each input record is
propagated before the next record is processed,
the network will capture the temporal infor-
mation between the individual record sets (e.g.
single-period autocorrelation). If multiple input
records are forward processed before propa-
gation, the model captures the temporal infor-
mation between those record sets (e.g. seasonal
fluctuations). If the ANN is being used for
classification, then all of the input records
should be processed before the error is propa-
gated. If this is unreasonable due to compu-
tational constraints (e.g. memory requirements),
then the sequence of input patterns should be
randomized with each epoch to avoid capturing
inadvertent autocorrelations in the data.

The back-propagation algorithm guarantees
that total error in the training set will continue
to decrease as the number of epochs increases.
With each epoch, the weights are modified to
decrease the error on the training patterns. As
training progresses, the amount of change in
the error function becomes smaller. Conver-
gence occurs when the change in the error
function is less than a specified threshold.

However, training with repeated applications
of the same data set may result in the phenom-
enon of overtraining. Similar to the concept of
overfitting discussed in the ‘Internal Architec-
ture’ section above, overtraining occurs when
the ANN attempts to exactly fit the limited set
of points and loses its ability to interpolate
between those points (Hecht-Nielsen 1990). As
training progresses, there is always an inter-
mediate stage at which the algorithm reaches
a good balance between accurately fitting the
training set examples and still providing a
reasonably good interpolation capability.



According to Hecht-Nielsen (1990), the back-
propagation model starts with a very flat sur-
face and does a good job at interpolating
between points on the surface.

However, the training data may be incom-
plete, or may contain spurious and misleading
regularities due to sampling errors and/or
omissions. At some point in later stages of
learning, the network starts to take advantage
of these idiosyncrasies in the training data. As
training progresses, the surface becomes con-
voluted as it attempts to ‘better’ fit the set of
training points and the ability to interpolate
between the points diminishes.

This problem is demonstrated in Figure 7.
An ANN was developed for time-series predic-
tion. The first 48 periods were used to train
the network, and the last 12 periods were used
for prediction. After 10 iterations, the ANN
results resembled the average of the data points
(heavy-dashed line). The ‘best’ predictive ability
occurred after 300 iterations. Notice that the
best-fit line does not exactly fit the data in
either the training or prediction periods. After
3000 iterations, the ANN almost exactly fits the

Figure 7 Effect of overtraining on time series data
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data points in the training periods. However,
the fit in the prediction period is very poor, and
is clearly worse than the 300-iteration results.

The problem created from overtraining is
determining when sufficient iterations have
been accomplished to achieve the desired pre-
diction accuracy. The ‘best’ predictive perform-
ance should be obtained with the set of weights
that produces the minimum value for the error
function in the testing set of data. Iterations
beyond that point will not improve predictive
performance. However, since the testing set of
data is a holdout sample used to evaluate the
performance of the network, it cannot be used
to determine when to stop training. Thus, per-
formance is evaluated on independent set of
known observations, termed an evaluation set,
after each epoch. The error on this evaluation
set will tend to decrease in step with the train-
ing error as the network generalizes from the
training data to the underlying function. As the
network begins to ‘overtrain’ to the training set
of data, the error for the evaluation set starts
to increase again even though the training error
continues to decrease. The algorithm should be



terminated when performance on the evalu-
ation set begins to deteriorate.

This technique may not be practical when
only a small amount of data is available since
validation data cannot be used for training
(Reed 1993). An alternative approach that has
been applied by Chung and Tam (1992) and
Coakley (1995) is the use of a jackknife method
to derive the evaluation set of data. In Chung
and Tam (1992), examples were excluded from
the training sample one at a time, with the
remaining examples serving as the training set.
This process is repeated n times (where n is
the number of observations in the training set)
and the average misclassification rate is calcu-
lated. Lachenbruch (1967) has shown that this
method provides an unbiased estimate for the
probability of misclassification. An extension of
this approach is to use k-fold cross-validation
when the data set is divided into k equal parts.
The ANN would be trained k times, using n-k
data points for training and k data points for
evaluation. The results of the k models are
then averaged. Coakley (1995) used a different
approach of drawing a random sample from
the training set at the beginning of each epoch.

CONCLUSIONS

The non-linear characteristics of ANNs make
them a promising alternative to traditional lin-
ear and parametric methods. The challenge
faced by ANN researchers is that there are no
formal theories for determining, a priori, the
optimal network model. Development of an
ANN model is a complex process that is cur-
rently more art than science. Thus, for an ANN
applied to a specific problem, experiments must
be conducted to determine the performance dif-
ferences between alternative models.

Based on an extensive survey of ANNs
applied to accounting and finance problems,
the following guidelines are suggested:

(1) Determine the type of research question and
comparable parametric model that would
be used. If the properties of the data do
not match the distributional assumptions
required by the parametric model, or there
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is some evidence of possible non-linearity,
then development of an ANN model is war-
ranted

(2) The most widely implemented learning
algorithm is back-propagation. For classi-
fication problems, there are no clear per-
formance differences between back-propa-
gation and other learning algorithms. Thus,
the selection will most likely be driven by
the availability of alternative learning algor-
ithms within the software package being
used. For forecasting problems, the recur-
rent algorithms appear to improve predic-
tive ability.

(3) There are no clear guidelines on the selec-
tion of the error and transfer functions. The
most widely used combination is the SSE
error function and sigmoid transfer func-
tion. It has been suggested that the relative
entropy error function is more appropriate
for classification problems that produce
dichotomous output. With this error func-
tion, the hyperbolic tangent transfer func-
tion seems most appropriate. Another con-
sideration is robustness of the transfer
function. During error propagation, round-
ing errors could produce negative values
for the hidden neurons. The sigmoid func-
tion cannot handle these values, while the
hyperbolic tangent function can. Finally,
some researchers recommend the sigmoid
function for classification problems that
involve learning about average behavior,
and the hyperbolic tangent function if the
problem involves learning about deviations
from the average (such as forecasting).

(4) In terms of architecture, selection of the
number of nodes in the input and output
layers is driven by the problem and the
nature of the input data. If a classification
task, using a single output node forces
classification along an ordinal scale, while
using multiple output nodes allows dupli-
cate and mis-classifications.

(5) Determining the number of layers, and the
number of nodes per layer, is still part of
the ‘art’ of neural networks.

I Assess the complexity of the problem
and the resulting response surface. Complex
response surfaces require larger networks.



I Assess the noise within the data. Smaller
networks should be used with noisy data
to increase generalization ability and avoid
overfitting to the noise.

I If being applied for classification tasks,
the number of nodes in the hidden layer
should be less than the number of nodes in
the input layer.

I Although numerous heuristics have been
suggested for determining the number
nodes, they do not apply across all the
reported studies.

I Some algorithms have been developed
that adaptively adjust the architecture dur-
ing training to overcome the ‘trial and error’
approach typically associated with back-
propagation ANNs. The expansion and
pruning algorithms both achieve improved
accuracies.

(6) Data-preparation requirements for the ANN
model are relatively well defined. The input
data should be scaled to match the input
side of the selected transfer function, while
the specified target values should be scaled
to match the output side. Most software
packages will perform scaling of the input
data, and will automatically generate the
initial training weights.

(7) If the ANN is used to model time series
data, then data sets should be presented in
order, and weights should be adjusted after
each data set. If the ANN is used for classi-
fication tasks, then the entire data set
should be presented before weights are
adjusted.

(8) Obtaining a sufficient sample size may be
problematic since three separate data sets
are required (training, evaluation, and
testing). Jackknife and cross validation
methods have been shown to be effective
techniques that allow use of smaller data
sets.

The availability of sample data appears to be
a driving factor in the ANN research performed
to date in the accounting and finance areas.
Many of the cited articles applied ANNs as an
extension of a previous statistical model-based
study, or used publicly available stock market
data. Of the 123 studies cited by Velido et al.
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(1999), only 9 were considered to be examples
of ANNs applied to a ‘real-world’ case. The
commercial applications of ANNs in the private
sector (see Brown et al., 1995) seem to focus on
a wider range of problems. We believe the
limited applications in published academic
research are due to lack of access to appropriate
data sets.

It appears that ANNs show promise in prob-
lem areas where traditional statistical tech-
niques are inadequate. ANNs provide a non-
linear dimension that captures the underlying
representations within the data sets. Thus,
future applications should focus on problem
areas where non-linear relationships are
believed to exist within the data.

However, much more research is needed in
the following areas:

I How do we systematically build an appropri-
ate ANN model for specific types of account-
ing and finance problems? Although we have
attempted to derive some guidelines from
the literature, we are still generalizing across
broad problem categories. Replication of the
studies using different algorithms, architec-
tures and data preparation techniques is
needed to refine these guidelines within spe-
cific application areas.

I Are any of the alternative training methods
and algorithms ‘best’ for a specific type of
accounting and finance problem? Many of
the studies are first attempts to demonstrate
the applicability of a technique within a
problem area. It is difficult to generalize from
these limited experiments. Again, replication
of the experiments is needed.
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