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This article presents a reduced-form, two-factor model to price commodity
derivatives, which generalizes the model by Schwartz and Smith (2000).
The model allows for two mean-reverting stochastic factors and therefore
implies that spot and futures prices can be stationary. An empirical study
for the crude oil market tests the new model. Out-of-sample pricing and
hedging results for futures and forwards show that the new model domi-
nates the nonstationary model by Schwartz and Smith in the following
sense: It works equally well for short-term contracts but leads to major
improvements for long-term contracts. This finding is particularly relevant
for typical applications like the valuation of commodity-linked real assets
with long maturities. © 2005 Wiley Periodicals, Inc. Jrl Fut Mark 25:211–
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1Relatively few papers, like Richard and Sundaresan (1981), Routledge, Seppi, and Spatt (2000),
and Bühler, Korn, and Schöbel (in press), price commodity derivatives in equilibrium.

INTRODUCTION

In recent years the trading volume of many commodity contingent claims
has grown rapidly, new derivatives products have been developed, and
options concepts have gained acceptance as important tools to value
commodity-linked real assets. Therefore, it is not surprising that the
issues of valuation and hedging of commodity contingent claims have
received much attention from practitioners and researchers.

Reduced-form Gaussian models from the affine class are undoubt-
edly the workhorse valuation models for commodity derivatives.1 The
major advantage of these models is that closed-form solutions for futures
and European-style options are available. Moreover, affine Gaussian
models lend themselves to maximum likelihood estimation of the
unknown model parameters by means of the Kalman filter algorithm.
Many specific models have been presented in the literature, following
basically two approaches. The first approach uses the notion of a conven-
ience yield (e.g., Brennan, 1991; Brennan & Schwartz, 1985; Casassus &
Collin-Dufresne, 2002; Gibson & Schwartz, 1990; Hilliard & Reiss,
1998; Schwartz, 1997, Model 3). In the second one, the commodity spot
price or its logarithm is specified directly as the sum of stochastic factors
(e.g., Cortazar & Naranjo, 2003; Ross, 1997; Schwartz, 1997 Model 1;
Schwartz & Smith, 2000; Sørensen, 2002). However, a model presented
in terms of a certain factor representation can in general be equivalently
presented in terms of another factor representation (see e.g., Schwartz &
Smith, 2000, p. 899 ff.).

A first important aspect of the concrete model choice is how many
stochastic factors should be used. Empirical studies by Brennan (1991)
and Schwartz (1997) suggest that a single-factor model is often too
restrictive to explain observed derivatives prices and their dynamics.
However, multi-factor models with three or more factors (e.g., Casassus &
Collin-Dufresne, 2002; Cortazar & Naranjo, 2003; Schwartz, 1997,
Model 3) have other disadvantages. Because of the increased number of
parameters, estimation becomes less accurate, parameters are more likely
to be unstable over time, and there is generally a higher model risk.
Moreover, many model applications that involve the valuation of real
options (see, e.g., Brennan & Schwartz, 1985) can only be solved numer-
ically. For such problems, models with more than two factors usually can-
not be applied because of restrictions in the numerical solutions. Thus, in
many cases a two-factor model is a good middle way.
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2A seasonal component is the main focus of Sørensen’s (2002) paper and can be added to the
models presented here. However, the crude oil futures and forward prices analyzed in the empirical
part of this paper do not show seasonal patterns.

A second important aspect of the concrete model choice is the drift
specification of the stochastic factors. This second aspect is the main
focus of this article, which extends the two-factor model by Schwartz and
Smith (2000) to a model with a more general drift specification. In con-
trast to existing two-factor models that contain at least one nonstationary
factor and lead to nonstationary spot and futures prices, the new model
variant allows for two mean-reverting factors. Therefore, futures prices
can be stationary. It is shown that the seemingly minor change in the
drift of the second factor, which leads to only one extra model parameter,
has major effects on the pricing and hedging of long-term derivatives
contracts.

The new model is tested in an extensive empirical study and com-
pared to a stationary one-factor model and a nonstationary two-factor
model. Three aspects of out-of-sample model performance are consid-
ered: (1) pricing, (2) short-horizon risk measurement and hedging, and
(3) the ability to create synthetic long-maturity contracts from existing
short-maturity contracts. The empirical study uses two data sets of crude
oil futures and forward contracts that supplement each other. The
futures data set (New York Mercantile Exchange crude oil futures prices)
covers a relatively long historical time period, which improves the statis-
tical power of the analysis. The forward data set (over-the-counter [OTC]
forward prices) covers a wide range of maturities, which allows for an
analysis of maturity effects. The empirical results support a clear recom-
mendation for the stationary two-factor model. It dominates the nonsta-
tionary model in the sense that it performs equally well for short-term
contracts but leads to major improvements for long-term contracts.

MODELS OF THE SPOT PRICE DYNAMICS

The analysis begins with an introduction of different specifications of
the exogenous commodity price process. It is assumed that prices consist
of several, potentially unobservable components. Following Schwartz
and Smith (2000), a first component can be interpreted as the long-term
or equilibrium price level, determined by long-term supply and demand
conditions. Deviations from this equilibrium level as a result of temporal
shocks on the supply or demand side build a second price component.
Finally, a deterministic time trend or seasonal patterns can be superim-
posed if appropriate.2 However, note that the reduced-form valuation
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3Modeling the log spot price instead of the spot price guarantees positive prices.

models presented here also allow for other interpretations of the
stochastic factors. For example, Schwartz and Smith (2000) have shown
that their “short-term–long-term” model is equivalent to the stochastic
convenience yield model by Gibson and Schwartz (1990).

The zero mean Ornstein-Uhlenbeck (O-U) process of Equation (1)
below describes the transitory deviations from the long-term level, where

is the mean-reversion parameter, the volatility parameter, and 
a standard Wiener process:

(1)

The transitory component given in Equation (1) is a common part of all
models of the spot price dynamics.

The specification of the long-term or equilibrium price level distin-
guishes different models. In the simplest case, the long-term price level
is an intertemporal constant, �. A combination of this long-term level
with the short-term deviations of Equation (1) leads to the following
definition of the log spot price,3 ln St:

(2)

The specification in Equations (1) and (2) is equivalent to
the Ornstein-Uhlenbeck process of Equation (3), with stationary mean
�, , and , the model proposed by Schwartz (1997) for
the log spot price dynamics.

(3)

Schwartz and Smith (2000) suggest an extension of this model.
These authors assume a stochastic long-term level which follows the
Brownian motion process (4), with drift rate volatility and a standard
Wiener process , such that

(4)

The following definition of the log spot price in Equation (5),

(5)

results in the stochastic differential Equation (6) for the price dynamics:
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with and .
Equation (6) highlights the interpretation of as a long-term mean
level.

Because of the introduction of a second stochastic factor, Equation (6)
offers a greater flexibility in the specification of the commodity price
dynamics compared to Equation (3). But there is another crucial differ-
ence between the two processes. The price process (3) is stationary
(mean-reverting), but the stochastic, nonstationary mean level of
Equation (4) renders the price process (6) nonstationary. To allow for a
(potentially) stationary two-factor model, the analysis further extends
model (6).

It is now assumed that the long-term price level follows the O-U
process of Equation (7), with stationary mean �, mean-reversion
parameter volatility and 

(7)

With the alternative definition of in Equation (8),

(8)

the log spot price process has the same form as in Equation (6),
but with from Equation (7) instead of Equation (4). Moreover, 

and 
Equations (7) and (8) specify the most general of the three models of the
commodity price dynamics. The first model is a special case with 
and the second one results in the limit for and 

PRICING FUTURES CONTRACTS

Because and are unobservable state variables and not prices of traded
assets, one can not uniquely deduce the drift rate of the commodity price
process under the risk-neutral measure from no-arbitrage arguments.
Instead, the analysis introduces market prices of risk and referring
to the state variables and as additional parameters. For simplicity,
these market prices of risk are assumed to be constant over time. With
constant market prices of risk, under the most general specification of the
commodity price dynamics of the previous section the risk-neutral
processes of the state variables become
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(10)

Given the dynamics of the state variables under the risk-neutral
measure, risk-neutral valuation leads to the prices of derivatives. Duffie
and Stanton (1992) show that under the risk-neutral measure the
futures price equals the expected spot price at maturity of the contract.
In the Appendix, this expectation is calculated under the dynamics
in Equations (9) and (10), and the definition of the spot price in
Equation (8). The resulting futures price F(0, T) at time zero of a con-
tract maturing at time T equals

(11)

with

Futures prices according to the Schwartz (1997) and Schwartz and
Smith (2000) models result from Equation (11) when taking the appro-
priate limits of the relevant parameters. Notably, if the long-term price
level follows a mean-reverting process and the sensitivity
of the futures price for changes in decreases with the time to maturity
of the contract. However, if the process of the long-term level is not
mean-reverting , the sensitivity is the same for all maturities.
Thus, Equation (11) suggests that the stationarity or nonstationarity of
the spot price process is particularly important for the pricing and hedg-
ing of contracts with a long time to maturity.

Closed-form solutions for European options on futures can also be
derived for the presented models (details are available from the author
upon request). Because the stationarity or nonstationarity of the spot
price process affects the distribution of the futures price on the option’s
maturity date—in particular, the volatility of the futures price—different
drift specifications lead to different option prices.

HEDGING LONG-TERM COMMODITY
PRICE EXPOSURE

An interesting example for the importance of the drift specification is the
problem of hedging long-term commodity price exposure. For many com-
modities, traded futures and options contracts extend only a couple of
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4This attention stems mainly from the problems of the German firm Metallgesellschaft in hedging
their long-term delivery commitments in oil. Culp and Miller (1999) provide a collection of impor-
tant contributions to the controversy surrounding the case and the related hedging strategy.

years. In such cases, one way to hedge long-term commodity price expo-
sure is to devise dynamic strategies based on short-maturity futures,
which synthetically create long-maturity futures, forwards, or options.
The question of how to design such strategies has recently received
much attention.4

In theory, if at least two short-term futures contracts with different
maturities are available and priced according to one of the model vari-
ants presented here, there is a dynamic strategy that delivers the pay-off
of a model-consistent long-term derivative. For concreteness, assume
that one wants to create a synthetic long-position of one futures contract
F3 with expiration date T3, or equivalently hedge a short-position of one
such contract. Further assume that two traded futures contracts F1 and
F2 are always available, with times to maturity t1 and t2, respectively.
All contracts refer to one unit of the commodity. The replication strategy
is characterized by the hedge positions h1t and h2t, that is, the
number of contracts held in the two short-term futures. These hedge
positions are the solutions to the following system of equations:

(12)

For futures prices according to the most general drift specification
given in Equation (11), System (12) has the following solution:

(13)

Equations (14) give the hedge positions for the Schwartz and Smith
(2000) special-case model:
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Equations (15) give the hedge positions for the Schwartz (1997) one-
factor model:

(15)

For the one-factor model, one hedging instrument suffices; that is,
there can always be a zero position in one of the short-term contracts.
Because of the linear relation between the log futures prices and the risk
factors, hedge positions are functions of the futures prices and the
parameters g and k only.

Figure 1 gives a visual impression of the replication strategies that
lead to a synthetic 10-year futures contract. The figure shows how the
hedge positions h1t and h2t that result from the three model variants with
different drift specifications vary with the time to maturity T3 � t,

, of the long-term futures. Short-term futures have times to
maturity of three months (t1) and 7 months (t2). The parameter values g
and k are estimates from oil futures data, as given in Table III, and a flat
futures curve is used.

Figure 1 shows that a negligible hedge position follows the one-factor
model (Model 1) for long maturities T3 � t. Only when T3 � t is less than
two years, substantial positions of more than 0.5 contracts appear.

t � [0, T3]

h2t � e�k(T3�t�t2) 

F3

F2
 h1t � 0,

FIGURE 1
Hedge positions resulting from different model variants (drift specifications). The figure

shows the numbers of short-term contracts needed to hedge one long-term contract.
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In contrast, the Schwartz and Smith (2000) model (Model 2) leads
to larger absolute hedge positions. The net position h1t � h2t, which is
the natural quantity to compare with h2t of the one-factor model, equals
one for all T3 � t, . Thus, on a net basis, Model 2 leads to a
one-to-one hedging strategy.

Model 3, the more general two-factor model with a stationary long-
term level, shares with Model 2 the feature that long positions in the
seven-months futures and short positions in the three-months futures
always appear. However, the sizes of hedge positions derived from the
two models are very different. Model 3 has a net hedge position h1t � h2t

closer to h2t of the one-factor model, starting from a very low value of
about 0.15 for long maturities and gradually increasing to one as T3 � t
decreases.

According to Figure 1, the stationarity or nonstationarity of the
long-term price level has a strong impact on the (net) hedge positions.
The intuition behind this finding is as follows: If follows a Brownian
motion (Model 2), then current changes have a permanent effect on the
level of the process and thus influence futures prices for all maturities in
the same way. As Equation (11) shows, when the futures curve is flat and

the sensitivity of the futures price for changes in does not
depend on the time to maturity of the futures. When follows an O-U
process (Model 3), current changes have only a temporary effect on the
spot price level. Prices of futures with short maturities respond more
strongly to changes in than do futures with long maturities. Thus, a
hedging strategy based on a stationary model needs fewer short-term
contracts to replicate a long-term contract.

One can create synthetic long-term options in a way similar to that
used for long-term futures. The corresponding replication strategies for
European-style options are easily derived from Equations (13) to (15) and
the closed-form solutions for the option prices. The replication strategies
crucially depend on the options’ deltas. Because the deltas are functions
of the volatility, which itself depends on the drift specification, the drift
specification enters via yet another channel if options on long-term
futures are replicated.

EMPIRICAL STUDY

Depending on the kind of application, the empirical performance of a val-
uation model has several important aspects. First, an investor requests a
price quote for a new derivative product, for example. This price quote
could be obtained by fitting a model to the prices of commodity derivatives

jt

jt

jtgS 0 

jt

t � [0, T3]
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that depend on the same risk factors as the new product and that already
trade in the market. In such an application, a model should lead to a high
pricing accuracy.

Second, to measure and manage the risk of a trading portfolio of
commodity derivatives on a short-term basis, a valuation model could be
used to calculate the portfolio’s sensitivities with respect to the relevant
risk factors. Here, the model should have good short-term hedging
properties.

Third, one could derive from a valuation model a dynamic trading
strategy leading to the pay-off of a synthetic long-term derivative
contract. For this purpose, a model with good long-term hedging proper-
ties is needed.

The empirical study compares the performance of different factor
specifications (Models 1, 2, and 3) for pricing accuracy, and short- and
long-term hedging quality.

Preliminary Data Analysis

The empirical study uses two data sets that complement each other. The
first data set contains weekly prices of New York Mercantile Exchange
(Nymex) crude oil futures contracts over the period from July 2, 1986, to
December 31, 2002. Prices are settlement prices on the last trading day
of a week. The holder of a short position of one Nymex crude oil futures
contract is committed to deliver 1,000 barrels of West Texas Intermediate
(WTI) crude in Cushing, Oklahoma. Up until 1989, the longest maturity
contracts were for 12 months. Currently, contracts with initial maturity
of up to 84 months are traded. However, liquidity is very low for the
longer-term contracts. Early in the data period, even prices for contracts
with maturities of more than nine months were not always available. The
analysis concentrates on those maturities for which prices exist over the
whole 1986 to 2002 period.

The second data set consists of OTC forward prices for the period
from January 22, 1993, to August 30, 1996, and was made available by
Enron. Again, prices refer to the last trading day of a week. The main
advantage of the forward data set lies in its complete coverage of times
to maturity from one month to nine years. The main disadvantage com-
pared to the futures data set is the relatively short time period covered.

A preliminary data analysis indicates the appropriateness of certain
factor specifications. Table I shows the means and standard deviations
of the time series of futures and forward prices for different maturities.
On average, the futures curve is downward sloping, that is, the Nymex
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futures market is in backwardation. The forward data confirm this find-
ing for maturities of up to 10 months. However, for longer maturities,
the forward curve is upward sloping on average. A forward curve that is
downward sloping at the short end and upward sloping at the long end is
not compatible with Model 1, the one-factor model by Schwartz (1997).
The standard deviation of prices generally decreases with the time to
maturity. This result confirms the prediction made by all presented
valuation models, because each model contains at least one stationary
component.5

An important difference between Models 1 and 3, on the one hand,
and Model 2, on the other hand, is the stationarity or nonstationarity of
the log spot price process as well as the derived futures price processes.
Hence, it is interesting to see if there is an empirical indication for
stationarity.

TABLE I

Means and Standard Deviations of Futures and Forward Prices

Futures data Forward data

Contract Standard Standard
maturity Mean deviation Mean deviation

1 month 20.68 4.90 18.61 2.01
2 months 20.52 4.68 18.38 1.71
3 months 20.36 4.47 18.23 1.53
4 months 20.22 4.26 18.14 1.42
5 months 20.09 4.08 18.09 1.34
6 months 19.97 3.91 18.06 1.29
7 months 19.86 3.75 18.04 1.25
8 months 19.76 3.61 18.02 1.21
9 months 19.68 3.48 18.02 1.18

10 months — — 18.02 1.16
12 months — — 18.05 1.12
18 months — — 18.15 1.07
24 months — — 18.32 1.02
36 months — — 18.73 0.95
48 months — — 19.15 0.92
60 months — — 19.56 0.90
72 months — — 19.91 0.88
84 months — — 20.21 0.85
96 months — — 20.51 0.81

108 months — — 20.81 0.78

Note. Weekly data are for the period 7/2/1986 to 12/20/2002 (futures, 861 observations) and the period
1/22/1993 to 8/30/1996 (forwards, 186 observations).

5Absolute numbers should not be compared between the futures and forward data presented in
Table I, because the means and standard deviations refer to different time periods.
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TABLE II

Results of Augmented Dickey-Fuller-Tests and KPSS-Tests for Logarithmic
Futures and Forward Prices 

Futures data Forward data

Dickey-Fuller-test KPSS-test Dickey-Fuller-test KPSS-test

Contract Test Test Test Test
maturity statistic Lags statistic statistic Lags statistic

1 month �3.23* 4 0.350 �1.67 4 0.259
2 months �3.28* 4 0.352 �1.93 4 0.208
3 months �3.24* 4 0.354 �1.95 4 0.168
4 months �3.19* 4 0.355 �1.97 4 0.153
5 months �3.16* 4 0.357 �2.00 4 0.160
6 months �2.87* 0 0.359 �2.04 4 0.178
7 months �2.89* 0 0.360 �2.08 4 0.203
8 months �2.91* 0 0.360 �2.11 4 0.229
9 months �2.94* 0 0.361 �2.13 4 0.257

10 months — — — �2.14 4 0.283
12 months — — — �2.01 4 0.328
18 months — — — �1.93 4 0.394
24 months — — — �2.19 7 0.416
36 months — — — �2.13 8 0.430
48 months — — — �1.88 8 0.423
60 months — — — �1.68 8 0.400
72 months — — — �1.26 3 0.375
84 months — — — �1.31 3 0.354
96 months — — — �1.38 3 0.333

108 months — — — �1.47 3 0.312

Note. Weekly data are for the period 7/2/1986 to 12/20/2002 (futures, 861 observations) and the period
1/22/1993 to 8/30/1996 (forwards, 186 observations).
*Significant on a 5%-level.

Table II provides the results of two different unit root tests. The first
one is the augmented test by Dickey and Fuller (1979), which tests the
null hypothesis of a unit root, the second one is the test by Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS, 1992), which states stationarity as
the null hypothesis. Because there is no time trend in the data, results
show the test variants with a constant term but without a deterministic
time trend. The procedure by Hall (1994) is applied to select the number
of augmentation terms used in the Dickey-Fuller tests for each series.
The KPSS tests are adjusted for autocorrelation by applying the Newey
and West (1987) variance estimate, with a number of lags equal to one-
third of the sample size.

For the futures data set, the unit root hypothesis is rejected for all
maturities on a 5% significance level. This result supports valuation
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6The stationarity of the crude oil spot price is also supported empirically by Pilipovic (1998).
Bessembinder, Coughenour, Seguin, and Smoller (1995) find evidence that investors expect crude
oil spot prices to be mean reverting. 
7The null hypothesis of the Dickey-Fuller test is rejected on a 5% significance level for test statistics
below: �2.86, the null hypothesis of the KPSS test is rejected on a 5% significance level for test
statistics above 0.463.
8Schwartz (1997), Schwartz and Smith (2000), Sørensen (2002), Casassus and Collin-Dufresne
(2002), and Cortazar and Naranjo (2003) have applied this approach to models of commodity deriv-
atives. Similar applications to term structure models are, for example, Chen and Scott (1993),
Pearson and Sun (1994), and Duffie and Singleton (1997). Kellerhals (2001) contains a detailed
treatment of the estimation of continuous-time models via Kalman filter techniques and provides
many additional references.

models with stationary price processes.6 For the forward data neither
stationarity nor nonstationarity is rejected on a 5% level.7 Such a finding
might be explained by the relatively short data period of less than four
years. As the unit roots literature shows, it is not the number of observa-
tions, but the length of the data period that is primarily important to
detect mean-reversion (see, e.g., Campbell & Perron, 1991, for an
overview and further references).

Model Estimation

To estimate the unknown parameters of the continuous time models, a
maximum likelihood approach is used that combines time series
and cross-sectional information.8 Assume that at times the
n-vectors of log futures prices with
times to maturity are observed. Further denote the length of
the sampling interval by h, which is one week in the relevant case of
weekly data. Then from the conditional distribution of the bivariate ran-
dom variable and the valuation formula (11) the following
state space model, (16) and (17), results:

(16)

with 

The error terms are bivariate i.i.d. normal random variables with
zero expectation and variance-covariance matrix 
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Equation (16) is the transition equation of the state space model.
The measurement equation is given as:

(17)

with n-vector 

and n � 2 matrix 

The n-vectors nt can be interpreted as pricing errors. If the model
explains futures prices perfectly, all nt’s equal zero. The nt’s are the only
component of the state space model that is not derived from the valua-
tion model. To account for possible serial correlation of the pricing
errors, the following AR(1) model is assumed for the nt’s:

(18)

where the ’s are zero mean i.i.d. normal random vectors and d is a
scalar parameter. The assumption of a single d coefficient, irrespective of
the time to maturity of the futures contract, has been made to limit the
number of free model parameters. For the same reason, a diagonal
variance-covariance matrix V of the ’s has been assumed, whose
elements are denoted by 

With constant model parameters, it will usually be impossible to fit
all m � n futures prices exactly. For the two-factor models (Models 2
and 3), it is possible to set at most two elements of V equal to zero, that
is, chose two contract maturities for which model prices equal observed
prices for all . For the one-factor model (Model 1), at most
one zero element of V will generally be possible.

The likelihood function of the above state space model is computed
recursively by means of the Kalman filter algorithm, and is maximized
with respect to the model parameters. In a second step, estimates of the
state variables can be obtained (for details see, e.g.,
Harvey, 1989; Gourieroux & Monfort, 1997, Ch. 15). Notably, the esti-
mation of Models 1 and 2 proceeds in the same way as the estimation of
Model 3, but the matrices must be modified appro-
priately. It is also notable that all empirical results obtained for Model 2,
that is, concerning parameter estimation, pricing accuracy, and hedging
performance, also hold for the convenience yield model by Gibson and
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Schwartz (1990). The reason is the formal equivalence of the two
models, as shown by Schwartz and Smith (2000).

Table III shows the estimation results for the futures data set.
Estimates are obtained from 861 weekly observations of futures with
maturities closest to one, three, five, seven, and nine months. Because
the five-months futures serve as the hedging instrument for strategies
based on Model 1, these contracts should be correctly priced, thus s5 is
set equal to zero. The two-factor models impose the restrictions s3 � 0
and s7 � 0, because the three-months and seven-months futures serve as
hedging instruments. All parameters are significantly different from zero,
except for the market prices of risk and , and the drift parameter m
in Model 2. In particular the g-parameter in Model 3, which provides
evidence on whether the second stochastic factor is mean-reverting or
not, has a t-statistic of 12.58.

The last two rows of Table III show the values of the information cri-
teria AIC (Akaike, 1973) and SIC (Schwarz, 1978), which are useful for
a statistical model comparison. Both criteria attain the best (lowest) val-
ues for Model 3, followed by Model 2. Model 1 is the worst specification.

ljlx

TABLE III

Estimation Results for the Futures Data 

Model 1 Model 2 Model 3
(One-factor-model: (Two-factor-model: (Two-factor-model:

stationary) nonstationary) stationary)

Standard Standard Standard
Parameter Estimate error Estimate error Estimate error

k 0.552 0.006 2.459 0.030 2.566 0.033
sx 0.311 0.004 0.280 0.005 0.270 0.005
lx 0.301 0.142 0.128 0.074 0.113 0.071
g — — — — 0.189 0.015
� 3.114 0.140 — — 3.260 0.319
m — — 0.040 0.052 — —
sj — — 0.200 0.003 0.217 0.003
lj — — 0.087 0.051 0.095 0.054
rxj — — 0.251 0.029 0.130 0.030
d 0.947 0.003 0.912 0.004 0.877 0.005
S1 0.022 0.000 0.015 0.000 0.014 0.000
S3 0.006 0.000 0 — 0 —
S5 0 — 0.002 0.000 0.002 0.000
S7 0.004 0.000 0 — 0 —
S9 0.007 0.000 0.002 0.000 0.002 0.000

AIC �34,499.54 �36,650.48 �36,694.36
SIC �34,456.72 �36,598.16 �36,637.28

Note. Weekly data are for the period 7/2/1986 to 12/20/2002.
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Table IV shows the estimation results for the forward data set.
Estimates are obtained from 186 weekly observations for 10 different
futures contracts. In addition to the contracts with one, three, five,
seven, and nine months to maturity, the analysis uses 12, 36, 60, 84, and
108-month contracts. All mean-reversion parameters and variance
parameters of the risk factors are statistically significant, and the g
parameter in Model 3 has a t-statistic of 16.35. A model comparison
based on the AIC leads to the same ordering as for the futures data set.
According to the SIC, which penalizes large models more heavily than
the AIC, a drift specification with two stationary factors (Model 3) is
again the best (lowest value). However the ordering of the other two
models has changed. The one-factor drift specification (Model 1) is
second best, followed by the nonstationary two-factor model (Model 2).

TABLE IV

Estimation Results for the Forward Data 

Model 1 Model 2 Model 3
(One-factor-model: (Two-factor-model: (Two-factor-model:

stationary) nonstationary) stationary)

Standard Standard Standard
Parameter Estimate error Estimate error Estimate error

k 0.542 0.017 2.600 0.077 3.277 0.112
sx 0.237 0.015 0.238 0.019 0.231 0.017
lx 0.036 0.287 0.203 0.145 0.277 0.143
g — — — — 0.161 0.010
� 2.928 0.283 — — 2.905 0.670
m — — �0.011 0.107 — —
sj — — 0.147 0.011 0.163 0.011
lj — — �0.019 0.106 �0.026 0.101
rxj — — 0.334 0.107 0.339 0.099
d 0.980 0.003 0.934 0.004 0.932 0.005
S1 0.023 0.001 0.021 0.001 0.022 0.001
S3 0.006 0.000 0 — 0 —
S5 0 — 0.002 0.000 0.001 0.000
S7 0.003 0.000 0 — 0 —
S9 0.004 0.001 0.002 0.000 0.002 0.000
S12 0.014 0.001 0.015 0.001 0.014 0.001
S36 0.013 0.002 0.015 0.003 0.013 0.002
S60 0.016 0.005 0.017 0.007 0.014 0.004
S84 0.017 0.007 0.018 0.013 0.015 0.006
S108 0.017 0.006 0.018 0.011 0.015 0.005

AIC �14,619.84 �14,620.62 �14,955.54
SIC �14,574.76 �14,569.10 �14,900.80

Note. Weekly data are for the period 1/22/1993 to 8/30/1996.



Drift Matters 227

Results: Pricing Accuracy

The first important aspect of a model comparison based on economic cri-
teria is pricing derivative products conditional on price information con-
tained in other derivatives. Therefore, estimation does not use all futures
and forward contracts but keeps certain contracts for model evaluation
using cross-sectional predictions. These latter contracts refer to maturi-
ties of two, four, six, and eight months for the futures data set.

Cross-sectional predictions are obtained from the different
valuation models. To avoid the usage of in-sample information, a rolling
data window is used to estimate model parameters. The length of the
data window is 60 weeks for the futures data set. Because futures con-
tracts with five different times to maturity (one, three, five, seven, and
nine months) are available for estimation, the data window contains 300
data points.

The first set of parameter values is estimated from the data of the
first 60 weeks. Using the estimated model parameters and estimates of
the state variables and , theoretical futures prices for maturities of
two, four, six, and eight months are calculated for each of the following
10 weeks. Subtraction of the observed market prices from the theoretical
prices delivers 10 pricing errors for each of the four maturities and each
of the three model variants. In the next step, parameters are estimated
using the data from week 11 to 70. The resulting parameter values are
then used in the following 10 weeks to calculate price predictions and
pricing errors. The whole procedure is repeated until the end of the data
period. As a final result, a time series of 801 pricing errors for each of the
four maturities and each of the three drift specifications is obtained.

Table V shows the mean absolute pricing errors and the mean pric-
ing errors per barrel of oil for the different model variants and contract
maturities. Model 1 leads to the largest mean absolute errors for all
maturities, which reach up to $0.42. Compared to the two-factor speci-
fications, pricing errors are significantly larger both economically and
statistically for the two-months contracts and the eight-months
contracts. This result is highlighted in the last part of the table, which
gives the mean differences of the absolute errors together with their
standard deviations.9 The one-factor model does not seem to be flexible
enough to price futures of all maturities equally well as the two-factor
models.

jtxt

9Because the time series of absolute errors show positive autocorrelation, the analysis uses standard
deviations according to the Newey and West (1987) estimator with a lag length equal to one third of
the sample size.
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TABLE V

Results of Pricing Accuracy for Futures Data (801 observations)

Model 1 Model 2 Model 3

Contract maturity Mean absolute error (in $)

2 months 0.420 0.203 0.203
4 months 0.105 0.097 0.097
6 months 0.085 0.076 0.076
8 months 0.216 0.096 0.096

Contract maturity Mean error (in $)

2 months 0.012 0.069 0.070
4 months 0.000 �0.043 �0.043
6 months 0.003 �0.038 �0.038
8 months 0.021 0.052 0.052

Mean difference of absolute errors (in $)
(Standard deviation in parenthesis)

Contract maturity Model 1 – Model 2 Model 2 – Model 3 Model 1 – Model 3

2 months 0.216** 0.000 0.217**
(0.080) (0.001) (0.080)

4 months 0.008 0.000 0.009
(0.039) (0.000) (0.039)

6 months 0.009 0.000 0.009
(0.030) (0.001) (0.030)

8 months 0.120** 0.000 0.120**
(0.029) (0.001) (0.029)

*Significantly different from zero: 5%-level.
**Significantly different from zero: 1%-level.

Mean absolute errors for Models 2 and 3 are almost identical. It
seems to make no difference which of the models is used to price the
missing contracts.

The mean errors show that the relatively bad performance of Model 1
(high mean absolute errors) is not because of a prediction bias but to a
high variance of the prediction errors. The prediction bias is even lower in
absolute terms than for Models 2 and 3.

Table VI shows the corresponding pricing results for the forward
data set. The rolling window that is employed for parameter estimation
has a length of 30 weeks here. Because futures contracts with 10 differ-
ent maturities are used in the cross section (1, 3, 5, 7, 12, 36, 60, 84,
and 108 months), each estimation round is based on 300 data points,
the same number as for futures. For the forward data, the analysis makes
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TABLE VI

Results of Pricing Accuracy for Forward Data (156 observations)

Model 1 Model 2 Model 3

Contract maturity Mean absolute error (in $)

2 months 0.451 0.090 0.086
4 months 0.106 0.032 0.028
6 months 0.091 0.019 0.018 
8 months 0.255 0.022 0.022

10 months 0.388 0.070 0.073
18 months 0.682 0.250 0.285
24 months 0.798 0.304 0.338
48 months 1.092 0.503 0.426
72 months 1.524 0.676 0.431
96 months 1.969 0.866 0.493

Contract maturity Mean error (in $)

2 months 0.409 0.051 0.025
4 months 0.082 �0.021 �0.011
6 months �0.052 �0.008 �0.000
8 months �0.123 0.004 �0.007

10 months �0.165 0.005 �0.030
18 months �0.161 �0.000 �0.132
24 months �0.071 0.001 �0.185
48 months 0.573 0.057 �0.152
72 months 1.291 �0.048 0.008
96 months 1.889 �0.423 0.133

Mean difference of absolute errors (in $)
(Standard deviation in parenthesis)

Contract maturity Model 1 – Model 2 Model 2 – Model 3 Model 1 – Model 3

2 months 0.361** 0.004 0.365**
(0.064) (0.006) (0.061)

4 months 0.075** 0.004 0.079**
(0.018) (0.002) (0.016)

6 months 0.072** 0.001 0.073**
(0.012) (0.002) (0.011)

8 months 0.233** 0.000 0.234**
(0.037) (0.002) (0.036)

10 months 0.318** �0.004 0.314**
(0.054) (0.007) (0.050)

18 months 0.423** �0.035 0.396**
(0.104) (0.029) (0.084)

24 months 0.495** �0.035 0.460**
(0.156) (0.043) (0.124)

48 months 0.589 0.077 0.666*
(0.372) (0.086) (0.305)

72 months 0.848 0.246 1.094*
(0.559) (0.131) (0.475)

96 months 1.103 0.373 1.476*
(0.797) (0.262) (0.591)

*Significant on a 5%-level.
**Significant on a 1%-level.



cross-sectional predictions for contracts with 2, 4, 6, 8, 10, 18, 24,
48, 72, and 96 months to maturity.

The forward data confirm the results of Table V for short- and
medium-term maturities of up to 24 months. The one-factor model
always leads to the largest mean absolute errors, whereas Model 2 and 3
are very similar in their higher pricing accuracy. For longer-maturity for-
wards, mean absolute errors increase considerably for all models. The
strongest effect is in Model 1, followed by Model 2. A comparison
between Model 2 and Model 3 shows important deviations. For the two
longest maturities (72 and 96 months), the differences in mean absolute
errors of about $0.25 and $0.37 are clearly economically significant.
However, as a result of the high autocorrelation and the relatively small
sample size of 156 observations, the differences are not statistically sig-
nificant on a 5% significance level. For the 72-month contract, there is a
significance on the 10% level.

In sum, the results on the pricing accuracy show that a two-factor
model should be preferred to a one-factor model. The choice of a sta-
tionarity or nonstationarity second factor seems to be irrelevant for
short- and medium-term contracts. However, for long-term contracts, a
stationary factor seems to bring some improvement.

Results: Short-Term Delta Hedging

A second important application refers to short-term risk measurement
and hedging. Banks and other firms usually calculate risk measures (e.g.,
value-at-risk) for their commodity positions on a short-term basis, both
for internal use and for external capital requirements. It is common
practice for “linear” derivatives positions like forwards and futures to use
a delta approximation, based on a valuation model. But which model
should be used to calculate deltas? The following analysis provides some
empirical evidence on the accuracy of delta-based risk measures derived
from different models. Seen from another perspective, the analysis
shows how well short-term delta hedging works for different models.

Three different futures portfolios are built at the end of each week
of the data period. The portfolios are initially delta neural and therefore
instantaneously risk free according to the three model variants with
alternative drift specifications. These portfolios contain two futures with
different maturities for the one-factor model and three futures with dif-
ferent maturities for the two-factor models. Portfolios referring to
Model 1 build on Equations (15): A short position of one contract with
maturity closest to nine months to deliver one barrel of crude oil, and h2t

230 Korn



Drift Matters 231

contracts with maturity closest to five months. Portfolio positions refer-
ring to Models 2 and 3 build on Equations (14) and (13), respectively,
with one contract short in the nine-months futures, h1t contracts in the
three-months futures, and h2t contracts in the seven-months futures.
After a holding period of one week, during which no rebalancing of the
portfolio or marking-to-market is considered, the new portfolio value is
calculated. Because the portfolio has an initial value of zero and is delta
neutral according to the respective model, it would be treated as a zero
position for risk measurement purposes. Thus it is natural to ask how far
the realized change in value of the portfolio (after one week) deviates
from a value of zero, that is, to which extent the risk of the portfolio has
been misjudged. The deviations of the realized changes in value from
zero can also be interpreted as the weekly hedging errors of a model-
based delta hedging strategy that hedges a short position in nine-months
futures with long positions in futures with shorter times to maturity.

To assess the out-of-sample performance of the different model
variants, model parameters entering Equations (13) to (15) are again
estimated using a rolling data window. The size of the data window is
60 weeks for the futures data set and 30 weeks for the forward data set.
After each estimation round, the resulting parameter values have been
used to set up the delta-neural portfolios for the following 10 weeks.

Table VII provides mean absolute hedging errors and mean hedging
errors for the futures data set. As for the pricing results, Model 1 clearly
shows the highest mean absolute error (more than $0.11), and the errors
of Models 2 and 3 are very close (a difference of less than $0.001). The
differences between the errors of Model 1, on the one hand, and the
errors of Models 2 and 3, on the other hand, are statistically significant.

The forward data set allows the investigation of how far the deltas
derived from different models capture the comovement between short-
and long-term contracts. Thus, different portfolios are constructed with
short positions of one futures to deliver one barrel in 9, 24, 48, 72, and
108 months, respectively. Again, Equations (13) to (15) provide the
positions in the three-, five-, and seven-months futures, using the appro-
priate adjustments for the use of forwards instead of futures.

Table VIII provides some evidence on weekly errors of delta hedging
the longer-term futures with the shorter-term contracts. For all models,
the mean absolute error increases considerably when moving from a
nine-months contract to a 24-months contract. However, a further
increase of the time to maturity of the long-term contract up to
108 months does not have such a significant effect on the errors. Except
for the portfolio that includes the 24-months contract, Model 3 leads to
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TABLE VII

Results of Short-Term Delta Hedging for Futures Data (800 observations)

Futures data 

Maturity of long-term
Model 1 Model 2 Model 3

contract Mean absolute error (in $)

9 months 0.114 0.047 0.048

Mean error (in $)

9 months 0.013 0.013 0.012

Mean difference of absolute errors (in $)

Maturity of long-term
(Standard deviation in parenthesis)

contract Model 1 – Model 2 Model 2 – Model 3 Model 1 – Model 3

9 months 0.067** �0.000 0.067**
(0.010) (0.001) (0.012)

*Significantly different from zero: 5%-level.
**Significantly different from zero: 1%-level.

the lowest mean absolute errors. Model 2 shows the highest errors.
Differences between models are often statistically significant at least at a
5% significance level. This is true in particular for the two-factor models.
For maturities of the long-term contract of 24 months and longer,
the errors resulting from the stationary model (Model 3) are signifi-
cantly smaller than the errors resulting form the nonstationary model
(Model 2). Even though a difference between mean absolute errors of
about three cents per barrel or about $30 per 1,000 barrel contract does
not seem very large, it can well be economically significant. If the
portfolio consisted, for example, of 1,000 48-month futures contracts
and appropriate positions in the shorter maturity futures, one would still
predict the same risk of zero. However, the difference between Models 2
and 3 in the mean absolute realized changes in portfolio value would then
be $300,000.

In sum, we see from the results of this second application that it
never harms to use a stationary two-factor model instead of a nonsta-
tionary two-factor model. However, it brings some benefits if long-term
contracts are contained in the portfolios. In this case, it might even be
better to use a stationary one-factor model instead of a nonstationary
two-factor model.
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TABLE VIII

Results of Short-term Delta Hedging for Forward Data (155 observations)

Forward data 

Maturity of long-term
Model 1 Model 2 Model 3

contract Mean absolute error (in $)

9 months 0.056 0.020 0.019
24 months 0.147 0.169 0.150
48 months 0.169 0.185 0.154
72 months 0.181 0.190 0.158

108 months 0.170 0.176 0.149

Mean error (in $)

9 months 0.015 �0.003 �0.002
24 months 0.025 �0.008 0.003
48 months 0.018 �0.011 0.004
72 months 0.013 �0.014 0.004

108 months 0.009 �0.015 0.003

Mean difference of absolute errors (in $)

Maturity of long-term
(Standard deviation in parenthesis)

contract Model 1 – Model 2 Model 2 – Model 3 Model 1 – Model 3

9 months 0.036** 0.001 0.037**
(0.006) (0.001) (0.005)

24 months �0.021* 0.019** �0.003
(0.009) (0.005) (0.005)

48 months �0.016 0.031** 0.016**
(0.015) (0.011) (0.005)

72 months �0.009 0.033* 0.023**
(0.014) (0.013) (0.003)

108 months �0.006 0.027* 0.021**
(0.010) (0.012) (0.003)

*Significantly different from zero: 5%-level.
**Significantly different from zero: 1%-level.

Results: Synthetic Long-Term Forwards

A third application is the creation of synthetic long-term commodity
derivatives by using dynamic trading strategies with short-term deriva-
tives and a risk-free asset. This subsection compares the replication
errors of such strategies between valuation models with different drift
specification.

The evaluation of a strategy to replicate, for example, the pay-off
of a 10-year forward contract with short-term futures, would require
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10The same or similar bootstraps methods have been applied by Ross (1997), Bollen and Whaley
(1998), and Bühler, Korn, and Schöbel (in press), to evaluate the hedging strategy of the German
firm Metallgesellschaft.

hundreds of years of historical data if the analysis were to perform a his-
torical simulation such as that undertaken in the previous subsection.
As an alternative approach, available Nymex futures prices are used to
estimate a multivariate time series model and to simulate 20,000
sample paths from this data model. For each of these sample paths,
model-consistent replication strategies are implemented for the three
different drift specifications. These strategies lead to 20,000 replication
errors for each model variant.10

The first equation of the data model (19) refers to the log oil price.
Because monthly observations on the last trading day of an expiring con-
tract are used to estimate the data model, the price of a one-month
futures (the expiring contract) should be a good proxy for the spot price.
Therefore, one-month futures prices are used in the first equation. The
second to seventh equation of the data model refer to the two- to seven-
months relative futures bases, that is, the difference between the spot
price and the futures price divided by the spot price. Lagged values refer-
ring to the same contract explain the relative basis of the k-months
futures at time t. Modeling of the relative basis instead of the (log) futures
prices avoids unrealistic deviations between spot prices and futures
prices in the simulated price paths which the analysis obtains from the
data model. The number of lags is specified separately for each equation
of the data model using Schwarz’s (1978) information criterion.
Equations (19) give the final result of this specification procedure.

(19)

with 

In System (19), denote constant model parameters and
are error terms with zero expectation.u1t, . . . , u7t 

a1,  b1, . . . , b7
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Table IX shows single equation OLS estimates of System (19) and
some results from diagnostic tests. The Ljung-Box tests give no indication
of autocorrelation in the residuals of the data model. Moreover, there is
little evidence for ARCH effects in the residuals. ARCH effects are
always insignificant on a 1% level, and they are significant on a 5% level in
only one case. Overall, if there is any time-series dependence in the resid-
uals, it is weak. Based on this result, the analysis can apply a standard
bootstrap to sample the residuals of Model (19). In general, whole
residual vectors are drawn to maintain any cross-sectional
correlation.

The simulation of price paths from the data model starts with the
values of the log spot price and relative bases on December 20, 2002, the
last trading day of the January 2003 contract. In a first step, a residual
vector is drawn from the data model, and the simulated log spot price
and bases are calculated for the next month according to System (19).
Starting from these new values, another residual vector is drawn that
allows the calculation of new prices again. This procedure is continued
until log spot prices and relative bases for a time horizon of up to nine
years are generated. From these data, price paths for spot oil and futures

u1t, . . . , u7t 

TABLE IX

Estimation Results for the Data Model

LR-test
Ljung-Box-test for ARCH

Parameter (12 lags) (12 lags)

â Test statistic Test statistic
Contract (St. dev.) (St. dev.) R2 (p-value) (p-value)

Spot 0.300 0.902 0.83 17.31 24.81
(0.089) (0.029) (0.136) (0.016)

2 months 0.002 0.587 0.53 11.00 4.72
(0.002) (0.040) (0.529) (0.960)

3 months 0.003 0.669 0.60 12.45 5.35
(0.003) (0.039) (0.410) (0.945)

4 months 0.003 0.716 0.64 12.76 6.79
(0.003) (0.038) (0.387) (0.871)

5 months 0.004 0.747 0.66 12.97 8.92
(0.003) (0.038) (0.371) (0.710)

6 months 0.005 0.769 0.68 13.51 11.13
(0.004) (0.038) (0.333) (0.518)

7 months 0.005 0.785 0.69 13.90 12.39
(0.004) (0.037) (0.307) (0.415)

b̂ 
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11Because futures contracts are used to create a synthetic long-term forward contract, the price F3

in Equations (13) to (15) must be replaced by the discounted price.

are calculated. These simulated prices together with the parameter esti-
mates from Table III are then used to implement the replication strate-
gies according to Equations (13) to (15).11 In Equations (13) to (15), the
short-term contracts are the five-months futures (Model 1) and the
three- and seven-months futures (Models 2 and 3). Initial maturities of
the long-term contracts are either 48, 72, or 108 months. Long-term
forward prices entering the replication strategies are always theoretical
prices, obtained from the simulated prices of short-term futures and the
model parameters. The replication portfolios are rebalanced (rolled over)
at the end of a month and held constant in the meantime to avoid exces-
sive rebalancing. No daily marking-to-market is considered. After a
month, the (positive or negative) proceeds from the short-term futures
are calculated and added to a savings account, which allows either
investing or borrowing for a fixed rate of 5% per year. At the end
of the hedge horizon, replication errors are calculated by subtracting
the payments of the expiring long-term forward from the balance of the
savings account.

Table X shows the mean absolute replication errors and mean repli-
cation errors of the strategies implied by different drift specifications.

TABLE X

Results of Creation of Synthetic Forward Contracts (one barrel of crude oil) 

Model 1 Model 2 Model 3

Contract Maturity Theoretical forward price (in $)

48 months 18.594 22.259 20.275
72 months 17.793 21.088 18.786

108 months 17.479 19.448 17.432

Mean absolute error (in $)

48 months 1.815 2.102 1.181
72 months 1.751 2.574 1.266

108 months 1.750 3.122 1.315

Mean error (in $)

48 months �0.811 1.445 �0.188
72 months �0.541 1.778 �0.162

108 months �0.397 2.222 �0.101

Note. Model parameters and data model have been estimated using the whole data set.
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12Some indication about the statistical significance of the differences would also be useful. In
principle, one could bootstrap the data model. Then, for every bootstrap sample, one would have to
estimate the data model, simulate the paths, and evaluate all replication strategies. However, this
procedure is hardly feasible for a reasonable number of bootstrap samples.

Replication refers to the creation of a synthetic forward that delivers one
barrel of crude oil in either 48, 72, or 108 months. Means are taken over
the 20,000 replication errors for each strategy. Mean absolute errors are
generally quite high. Model 3 shows the smallest values of about $1.3,
followed by Models 1 and 2. Differences between model variants lie
within the range of $0.43 and $1.8. Thus, there is a significant difference
between alternative drift specifications in economic terms.12 Notably, for
the stationary models (Model 1 and Model 3) the mean absolute error
barely changes with the time to maturity of the long-term contract. For
the nonstationary model, Model 2, the mean absolute replication error is
much larger for a 108-months contract than for a 48-months contract.
Figure 1 shows a possible reason for this result. Because Model 2 takes a
one-to-one net hedge position regardless of the time to maturity of the
long-term contract, basis risk increases almost proportionally with the
number of times the position is rolled over. In contrast, basis risk should
not increase considerably for the stationary models.

A positive mean error, as is observed from Model 2, means that a
strategy that is short one long-term forward, and then hedges this posi-
tion by rolling over short-term futures leads to gains on average.
However, a strategy that is long one long-term forward and hedges with
short-term futures looses money on average. Thus, a nonzero mean error
could be either a desirable or undesirable property in practice, depend-
ing on whether a long position or a short position is replicated. However,
in comparison to a perfect model, which always delivers a replication
error of zero, a nonzero mean error is certainly a model deficiency.

So far, both the parameters of the valuation models and the
parameters of the data model used for simulation have been estimated
from the whole data set. In this sense, Table X provides in-sample
results that might be too optimistic. To check this conjecture, the fol-
lowing control study has been performed: The last 10 years of the data
set are reserved for estimation of the data model. The remaining six
and half years are used for estimation of the parameters of the valua-
tion models, that is, there is no overlap in the two periods. Accordingly,
the new starting date for the simulation is now January 20, 1993,
the first date that has not been used to estimate parameters of the
valuation models.
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Table XI shows the results of the control study. As expected, the
mean absolute errors increase for all models. The highest increase is for
Model 2. Similar to the results of Table X, the errors of the stationary
models are relatively stable if the time to maturity increases. But there is
an enormous increase in errors with the time to maturity for the nonsta-
tionary model.

In sum, the results on the synthetic creation of forwards show again
that a stationary two-factor models leads to considerable improvements
compared to a nonstationary two-factor model if long-term contracts are
involved. In this application, even a stationary one-factor model
performs better than the nonstationary two-factor model.

CONCLUSION

This article presents a reduced-form affine two-factor model for the pric-
ing of commodity derivatives. The model generalizes the model by
Schwartz and Smith (2000) with respect to the drift specification of the
stochastic factors. It allows for two mean-reverting factors and therefore
for stationary spot and futures prices.

An empirical study for the crude oil market compares the new
model with the stationary one-factor model by Schwartz (1997) and the
nonstationary two-factor model by Schwartz and Smith (2000). Based
on statistical criteria and on the results for different pricing and hedging

TABLE XI

Results of Creation of Synthetic Forward Contracts (one barrel of crude oil) 

Model 1 Model 2 Model 3

Contract maturity Theoretical forward price (in $)

48 months 16.812 18.691 18.140
72 months 16.393 18.214 17.485

108 months 16.163 17.522 16.774

Mean absolute error (in $)

48 months 2.049 3.245 1.914
72 months 2.210 5.326 2.436

108 months 2.299 8.331 2.777

Mean error (in $)

48 months �0.745 2.151 0.815
72 months �0.975 4.349 1.382

108 months �1.158 7.580 1.806

Note. Model parameters have been estimated using the first six and a half years of the data period. The data
model has been estimated using the last ten years of the data period.
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applications, the paper comes to two main conclusions: First, a one-
factor model does not seem to be flexible enough to provide satisfactory
results in many instances. Second, the use of the more general station-
ary two-factor model instead of the nonstationary two-factor model
brings additional benefits with no additional costs. Both two-factor
models are almost identical in terms of analytical tractability and ease of
implementation, because the more general model has only one more
parameter. However, this extra parameter could either help or hurt in
out-of sample applications. As the results show, it never hurts but leads
rather to considerably better results with respect to long maturity con-
tracts. This is an important finding, because for many applications with
real options, where the use of more general three- or four-factor models
is not feasible, very long time horizons are relevant.

Of course, the analysis of this article is restricted to the crude oil
market. However, because mean reversion is a well-known stylized fact
for many commodities, it can be conjectured that the simple model
extension suggested here is also useful for other markets. Tests of this
conjecture are left for future research.

APPENDIX

It follows from the properties of the Ornstein-Uhlenbeck processes in
Equations (9) and (10) that conditional on and , the distribution of
the state variables at time T under the risk-neutral measure is bivariate
normal with the following mean vector and variance-covariance matrix:

(20)

(21)

Using the above moments, the definition of the log spot price in
Equation (8) implies the following expectation and variance of ln ST:

(22)�
k

k � g
 c e�gT j0 � (1 � e�gT)a® �

lj

g
b d�  

g®
k � g

d  
E0*(ln ST) � c e�kT

 x0 �  (1 � e�kT)  

lx

k

 Cov0*([xT, jT]) � ≥ (1 � e�2kT)  

s2
x

2k
(1 � e�(k�g)T)  

rxj sx sj

(k � g)

(1 � e�(k�g)T)  

rxj sx sj

(k � g)
 (1 � e�2gT)  

s2
g

2g

¥
E*0([xT,  jT]) � c e�kT

  x0 � (1� e�kT) 
lx

k
 , e�gT j0 � (1 � e�gT)a® �

lj

g
b d

j0x0



240 Korn

(23)

Because ln ST is normally distributed, it follows:

(24)

Inserting the expressions from Equations (22) and (23) into
Equation (24) delivers the pricing formula (11).
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