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We examine the forecast quality of Chicago Board Options Exchange
(CBOE) implied volatility indexes based on the Nasdaq 100 and Standard
and Poor’s 100 and 500 stock indexes. We find that the forecast quality of
CBOE implied volatilities for the S&P 100 (VXO) and S&P 500 (VIX) has
improved since 1995. Implied volatilities for the Nasdaq 100 (VXN)
appear to provide even higher quality forecasts of future volatility. We
further find that attenuation biases induced by the econometric problem
of errors in variables appear to have largely disappeared from CBOE
volatility index data since 1995. © 2005 Wiley Periodicals, Inc. Jrl Fut
Mark 25:339–373, 2005

INTRODUCTION

Most investors would agree that stock prices, even when rising, climb a
wall of worry. Where volatility and investor sentiment about the future go
hand in hand, the forward view offered by volatility implied by option
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prices is often regarded as a bona fide investor fear gauge (Whaley, 2000).
Implied volatilities are sufficiently important so as to be routinely reported
by financial news services and closely followed by many finance profes-
sionals. As a result, the information content and forecast quality of implied
volatility stands as an important topic in financial markets research.

Latane and Rendleman (1976), Chiras and Manaster (1978), and
Beckers (1981) provide early assessments of implied volatility forecast
quality. They found that implied volatilities offered better estimates of
future return volatility than ex post standard deviations calculated from
historical returns data. More recently, Jorion (1995) finds that implied
volatilities from currency options outperform volatility forecasts from
historical price data.

In marked contrast to the first studies cited above, several later
studies found weaknesses in implied volatility as a predictor of future
realized volatility; these include Day and Lewis (1988), Lamoureux and
Lastrapes (1993), and Canina and Figlewski (1993). Christenson and
Prabhala (1998) suggest that some of these weaknesses are related to
methodological issues, such as overlapping and mismatched sample peri-
ods. The validity of these concerns is supported by Fleming (1998) and
Fleming, Ostdiek, and Whaley (1995), who find that implied volatilities
from S&P 100 index options yield efficient forecasts of month-ahead
S&P 100 index volatility. Further studies of the performance of S&P 100
implied volatility by Christensen and Prabhala (1998), Christensen and
Strunk-Hansen (2002), and Fleming (1998) find that implied volatility
forecasts are upwardly biased, but dominate historical volatility in terms
of ex ante forecasting power. Fleming (1999) shows that the forecast bias
of S&P 100 implied volatility is not economically significant after
accounting for transaction costs. More recently, Blair, Poon, and Taylor
(2001) conclude that implied volatilities from S&P 100 index option
prices provide more accurate volatility forecasts than those obtained
from either low- or high-frequency index returns.

Similar to prior studies, in this paper we examine the forecast
quality of implied volatility by focusing on three implied volatility index-
es published by the Chicago Board Options Exchange (CBOE). These
volatility indexes are reported under the ticker symbols VXO, VIX, and
VXN. The VXO and VIX volatility indexes are based on the Standard &
Poor’s 100 and 500 stock indexes, respectively, with ticker symbols OEX
and SPX. The VXN volatility index is based on the Nasdaq 100 stock
index, with ticker symbol NDX. The importance of the CBOE volatility
indexes is attested to by the fact they merit their own three-letter ticker
symbols. Current values for VXO, VIX, and VXN are accessible in real
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time, along with current values for the OEX, SPX, and NDX stock
indexes.

Like previous studies of implied volatility, our benchmark for com-
parison is return volatility for the underlying index realized during the
life of the option. We find that the VXO, VIX, and VXN volatility indexes
published by the CBOE easily outperform historical volatility as predic-
tors of future return volatility for both the S&P 100 index (OEX),
S&P 500 index (SPX), and the Nasdaq 100 index (NDX). We also find
that attenuation biases induced by the econometric problem of errors in
variables reported in prior studies has largely disappeared from CBOE
volatility index data since 1995. After 1995, instrumental variable regres-
sions do not appear to yield assessments of forecast quality that are con-
sistently superior to those obtained from ordinary least-squares (OLS)
regressions.

This paper is organized as follows: In the next section, we present
the volatility measures used in this study and summarize their basic sta-
tistical properties. A framework for analysis of volatility forecasts from
realized and implied volatility measures is developed in the third section.
In the fourth section, we present an empirical assessment of the forecast
quality of CBOE volatility indexes using ordinary least-squares (OLS)
regressions. Assessments based on an instrumental variables methodolo-
gy are presented in the fifth section. In the sixth section, we analyze the
statistical significance of volatility forecast errors embodied in CBOE
implied volatilities. The seventh section provides a GARCH perspective
of volatility forecast quality. A summary and conclusion follow in the
final section.

DATA SOURCES AND VOLATILITY
MEASURES

Data Sources

Data for this study span the period January 1988 through December
2003 and include index returns and option-implied volatilities for the
Standard and Poor’s 100 and 500 stock indexes and the Nasdaq 100
stock index. Index returns are computed from index data published by
Reuters under the ticker symbols OEX for the S&P 100 index, SPX for
the S&P 500 index, and NDX for the Nasdaq 100 index. Option-implied
volatilities for these indexes are supplied by the Chicago Board Options
Exchange (CBOE).
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Volatility Measures

Two volatility measures are used in this study. The first volatility measure
is the sample standard deviation of daily index returns, which serves as
the benchmark for this study. Annualized index return volatility within
month m is computed for each calendar month in the sample period as
defined in Equation (1).

(1)

In Equation (1), rd,m represents an index return on day d in month m,
and nm is the number of trading days in month m. The volatility measure
VOLm is computed separately in each month and represents a series of
nonoverlapping monthly return standard deviations for the S&P 100 and
Nasdaq 100 indexes.

The adjustment factor embedded in Equation (1) produces
a volatility series that conforms to the same 22-trading-day basis to
which CBOE implied volatilities are calibrated. As explained in Fleming,
Ostdiek, and Whaley (1995), the CBOE implied volatility calculations
convert calendar days to trading-days via this function:

Trading days � Calendar days � 2 � int(Calendar days�7)

The conversion from 30 calendar days to 22 trading days yields an
adjustment of (�1.1677), which restates the annualized return
standard deviation to a 22-trading-day basis. This calibration is necessary
to achieve comparability between the realized volatility series VOLm and
the CBOE implied volatility series VXO, VIX, and VXN. As discussed in
Bilson (2003), an essentially identical adjustment (�1.1832) also
effectively calibrates volatility measures to the same day-count basis.

The second volatility measure, CBOE implied volatility, is the pri-
mary focus of this study. The Chicago Board Options Exchange (CBOE)
provides three volatility series reported under the ticker symbols VXO,
VIX, and VXN derived from options traded on the S&P 100, S&P 500,
and Nasdaq 100 indexes, respectively.

Two methods are used by the CBOE to compute implied volatility
indexes. The VXO volatility series for the S&P 100 (formerly VIX) is
computed as a weighted average of separate implied volatilities from
eight near-the-money call and put options from two nearby option expi-
ration dates. Harvey and Whaley (1991) show that S&P 100 put and call
implied volatilities are negatively correlated and so combining them
results in a more efficient estimator. Corrado and Miller (1996) analyze
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various weighting schemes and find that the method used for the VXO
index is expected to be as efficient as any other suggested in the litera-
ture. Calculation of VXO values follows the formula stated immediately
below in which IVC(K, T) and IVP(K, T) are implied volatilities for call
and put options, respectively, with strike K and maturity T.

(2)

In the above VXO formula, the nearest-the-money strikes Km and
Km�1 bracket the current index level, i.e., Km � S0 � Km�1. The two near-
est maturities are chosen such that T2 and T1 are not less than 22 and
eight trading days, respectively, i.e., T2 � 22 � T1 � 8. Authoritative
references for the exact algorithm used to compute VXO (formerly VIX)
are Whaley (1993) and Fleming, Ostdiek, and Whaley (1995).

The VIX and VXN volatility series for the S&P 500 and Nasdaq 100
indexes, respectively, are computed as a weighted average of the prices
of all out-of-the-money call and put options from two nearby expiration
dates. Theoretical justification for this method is given in Britten-Jones
and Neuberger (2000). Calculation of VIX and VXN volatility values
follows the formula stated immediately below, in which C(K, T) and
P(K, T) denote prices for call and put options with strike price K and
time to maturity T. This formula assumes the option chain has strikes
ordered as Kj�1 > Kj with the two nearest maturities chosen to satisfy the
restriction T2 � 22 � T1 � 8.

(3)

In this study, VXOm, VIXm, and VXNm denote implied volatilities for
S&P 100, S&P 500, and Nasdaq 100 indexes observed at the close of the
last trading day in month m. Therefore these implied volatilities repre-
sent market forecasts of future return volatility in month m � 1.

Data Summary Statistics

Data for this study are distributed across several sample periods. Data
for the VXO S&P 100 volatility index are partitioned into an 84-month
period from January 1988 through December 1994 and a 108-month
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period from January 1995 through December 2003. The January 1988
start avoids the immediate post-1987 crash period. Data for the VIX S&P
500 volatility index are split into a 60-month period from January 1990
to December 1994 and a 108-month period from January 1995 through
December 2003. Data for the VXN Nasdaq 100 volatility index span the
108-month period from January 1995 through December 2003. The
January 1990 start date for VIX data and January 1995 start date for
VXN data are imposed by data availability from the CBOE.

Figures 1, 2, and 3 provide a graphical display of the time series of
CBOE implied volatilities and corresponding realized volatilities.
Figure 1 plots implied and realized volatilities VXOm�1 and VOLm,
respectively, for the S&P 100 index over the 16-year period 1988–2003.
Figure 2 plots implied and realized volatilities VIXm�1 and VOLm, respec-
tively, for the S&P 500 index over the 14-year period 1990–2003. Figure 3
plots implied and realized volatilities VXNm�1 and VOLm, respectively, for
the Nasdaq 100 index over the nine-year period 1995–2003. Implied
volatilities are plotted with solid lines and realized volatilities are plotted
with dashed lines. These volatility series are synchronized so that real-
ized volatility in month m is aligned with implied volatility observed on
the last trading day of month m � 1. Differences between realized
volatility in month m and implied volatility observed on the last trading
day of the prior month represent observed forecast errors.

FIGURE 1
S&P 100 index realized vs. implied volatility.
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FIGURE 2
S&P 500 index realized vs. implied volatility.
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FIGURE 3
Nasdaq 100 index realized vs. implied volatility.
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Summary descriptive statistics for these volatility data are provided
in Table I. Table I reveals marked differences between realized and
implied volatility series. Average S&P 100 implied volatility VXOm was
greater than average realized volatility VOLm by 2.91% � 17.63% �

14.72% over the period 1988–1994 and by 2.71% � 24.08% � 21.37%
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in the period 1995–2003. Similarly, average S&P 500 implied volatility
VIXm exceeded average realized volatility VOLm by 3.22% � 16.41% �

13.19% during the period 1990–1994 and by 1.98% � 22.30% �

20.32% in the period 1995–2003. Average Nasdaq 100 implied volatility
VXNm was greater than average realized volatility VOLm by 0.39% �
40.78% � 40.39% over the period 1995–2003.

Two-sample matched-pair t tests are used to test for significant dif-
ferences between mean values of realized and implied volatilities. The
S&P 100 volatility measures yield t test values of �6.89 and �5.31 from
the periods 1988–1994 and 1995–2003, respectively. The S&P 500
volatility measures yield t test values of �7.87 and �4.02 from the peri-
ods 1990–1994 and 1995–2003. The Nasdaq 100 index yields a t test

TABLE I

Descriptive Statistics for Monthly Volatility Measures

Mean (%) Std dev (%) Skewness Kurtosis

Panel A: S&P 100 January 1988–December 1994

VOLm 14.72 5.28 1.18 4.79
VXOm 17.63 4.78 0.83 3.37
ln(VOLm) 2.63 0.34 0.05 3.30
ln(VXOm) 2.84 0.26 0.24 2.54

Panel B: S&P 100 January 1995–December 2003

VOLm 21.37 9.46 0.82 3.50
VXOm 24.08 7.11 0.62 3.98
ln(VOLm) 2.97 0.45 �0.24 2.79
ln(VXOm) 3.14 0.30 �0.31 3.12

Panel C: S&P 500 January 1990–December 1994

VOLm 13.19 4.66 1.19 4.93
VIXm 16.41 4.71 1.35 4.45
ln(VOLm) 2.52 0.36 0.17 3.00
ln(VIXm) 2.76 0.26 0.80 3.03

Panel D: S&P 500 January 1995–December 2003

VOLm 20.32 8.83 0.89 3.65
VIXm 22.30 6.32 0.67 4.19
ln(VOLm) 2.92 0.45 �0.28 2.98
ln(VIXm) 3.06 0.29 �0.28 3.09

Panel E: Nasdaq 100 January 1995–December 2003

VOLm 40.39 18.34 1.33 4.88
VXNm 40.78 14.42 0.82 3.08
ln(VOLm) 3.61 0.42 0.25 2.76
ln(VXNm) 3.65 0.34 0.16 2.34

Note. Sample moments of monthly volatility: VOLm represents realized volatility in month m computed from
daily returns within the month. VXOm, VIXm, and VXNm denote CBOE implied volatility indexes for the S&P 100,
S&P 500, and Nasdaq 100 indexes, respectively.
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value of �0.55 for the period 1995–2003. These t values indicate statis-
tically significant biases for S&P 100 and S&P 500 index volatility fore-
casts, but an insignificant bias for Nasdaq 100 index volatility forecasts.

At least part of the observed forecast bias might be attributed to the
algorithm used to compute implied volatility. For example, Fleming,
Ostdiek, and Whaley (1995) show that 35 basis points of the difference
between S&P 100 implied and realized volatilities is explained by intra-
day effects associated with the algorithm used to compute CBOE
implied volatilities. Fleming and Whaley (1994) report an additional bias
of about 60 basis points attributable to the wildcard option embedded in
S&P 100 index options. S&P 500 and Nasdaq 100 index options do not
have a wildcard feature.

Naive Volatility Forecasts

Visible co-movement between the volatility time series displayed in
Figures 1 and 2 suggest that naive forecasts might forecast future return
volatility. For example, consider naive volatility forecasts based on a sim-
ple weighted average of lagged realized volatility VOLm�1 and implied
volatility IVOLm�1. We evaluate three cases using the mean square error
criteria stated immediately below: a � 1, a � 0, and a � a*, where a* is
chosen to minimize mean square error subject to 0 � a � 1.

(4)

Mean square errors for these naive forecasts are reported in Table II.

MSE(a) �
1
Ma

M

m�1
(VOLm � a � VOLm�1 � (1 � a) � IVOLm�1)2

TABLE II

Mean Squared Errors of Naive Volatility Forecasts

S&P 100 S&P 500 Nasdaq 100

1988–1994 1995–2003 1990–1994 1995–2003 1995–2003

MSE(1) 41.48 66.69 21.76 57.47 195.87
MSE(0) 31.52 48.60 25.81 43.43 96.37
MSE(a*) 30.09 46.63 18.46 41.42 96.37
a* 0.262 0.239 0.599 0.262 0.000

Note. Mean squared errors (MSE ) of naive volatility forecasts of realized volatility (VOLm) based on weighted
averages of lagged volatility (VOLm�1) and implied volatility (IVOLm�1).

Three cases are evaluated: a � 1, a � 0, and a � a*, where a* is chosen to minimize mean square error
subject to 0 � a � 1.

MSE(a) �
1
Ma

M

m�1
(VOLm � a � VOLm�1 � (1 � a) � IVOLm�1)2
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As shown in Table II, the a � 0 case yields smaller mean square
errors than the a � 1 case in all instances except for the S&P 500 index
in the period 1990–1994. However, in the period 1995–2003, the
implied volatilities VXOm�1, VIXm�1, and VXNm�1 for the S&P 100,
S&P 500, and Nasdaq 100 indexes, respectively, clearly dominate lagged
volatility VOLm�1 in forming naive forecasts of realized volatility VOLm.
Indeed, the case a* � 0 is optimal for the Nasdaq 100 index in the period
1995–2003.

A MODEL FRAMEWORK FOR ASSESSING
VOLATILITY FORECASTS

In this section, we develop a framework for a further analysis of monthly
volatility forecasts. This framework may be interpreted as a null hypothesis
for empirical testing, or as a model for interpretation of empirical results.

Specification of Model Variables

Volatility realized in month m is denoted by VOLm as specified in
Equation (1). We assume that realized volatility has two components: a
latent volatility sm evolving according to the true, but unknown, under-
lying economic model and a random deviation xm of realized volatility
from latent volatility. We further assume that the deviations xm are mean
zero, independently distributed random variables.

VOLm � sm � xm, E(xm) � 0, E(smxm) � 0 (5)

Consequently, the total variance of realized volatility is a sum of compo-
nent variances.

Var(VOLm) � Var(sm) � Var(xm) (6)

The assumptions underlying Equations (5) and (6) are essentially
those made by Andersen and Bollerslev (1998) in the context of daily
volatility forecasts. They argue that rational volatility forecasts represent
predictions of latent volatility and not realized volatility, since deviations
between realized and latent volatility are unpredictable noise.

Equations (5) and (6) imply that a regression of current volatility
VOLm on lagged volatility VOLm�1 yields a regression slope coefficient
attenuated by an errors-in-variables bias.

(7)lim
MS�

a
M

m�2
 (VolmVolm�1 � Vol2)

a
M

m�2
 (Vol2

m�1 � Vol2)
�

Cov(sm, sm�1)

Var(sm�1) � Var(xm�1)
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Nota bene, Var(sm�1), Var(xm�1), and Var(jm�1) (introduced immediately
below) are asymptotically equivalent to Var(sm), Var(xm), and Var(jm),
respectively. The finite sample index m � 1 is retained for convenience in
referring to the original finite sample formula.

A similar framework in the sense of Andersen and Bollerslev (1998)
is applicable to implied volatility. Specifically, let IVOLm�1 denote an
option-implied volatility observed at the end of month m �1. Under a
null hypothesis of unbiasedness, IVOLm�1 is an unbiased forecast of the
true latent volatility sm in month m in the sense that it represents a
rational market expectation based on information available at the end of
month m � 1, i.e., IVOLm�1 � Em�1(sm). However, the true but unob-
served value of latent volatility in month m will differ from IVOLm�1 by a
random forecast error jm�1. This forecast error jm�1 would reflect incom-
plete availability of information required to forecast latent volatility sm

exactly. Some part of the error jm�1 might also be attributable to inexact
observation of the true implied volatility due to the presence of market
frictions in price data. Combining the equality sm � Em�1(sm) � jm�1

with IVOLm�1 � Em�1(sm) specified by a null hypothesis of unbiasedness
yields Equation (8) immediately below.

IVOLm�1 � sm � jm�1 (8)

Under the null hypothesis that IVOLm�1 represents a forecast of sm

without systematically exploitable arbitrage opportunities, forecast errors
will be orthogonal to latent volatilities, that is, Cov(smjm�1) � 0. In turn,
this implies that the total variance of implied volatility is the sum of com-
ponent variances.

Var(IVOLm�1) � Var(sm) � Var(jm�1) (9)

As a consequence of Equations (5), (8), and (9), a regression of realized
volatility VOLm on implied volatility IVOLm�1 yields a regression slope
coefficient attenuated by an errors-in-variables bias.

(10)

Equation (10) suggests that a one-sided test for a slope coefficient sig-
nificantly less than one is equivalent to a test for a significant forecast
error variance Var(jm�1).

The errors-in-variables bias also affects multivariate regressions of
current volatility VOLm on implied volatility IVOLm�1 and lagged volatil-
ity VOLm�1.

VOLm � b0 � b1 � IVOLm�1 � b2 � VOLm�1 (11)

lim
MS�

a
M

m�2
 (VOLmIVOLm�1 � VOL IVOL)

a
M

m�2 
(IVOL2

m�1 � IVOL2)
�

Var(sm)

Var(sm) � Var(jm�1)



350 Corrado and Miller

Asymptotic values for the slope coefficients b1 and b2 in Equation (11)
within the framework developed above reflect biases induced by the
variances Var(xm) and Var(jm�1).

(12)

Equation (12) reveals that the slope coefficient b1 is biased downward
below one and the slope coefficient b2 is biased upward above zero. As
the forecast error variance Var(jm�1) diminishes, the slope coefficient b1

approaches unity and b2 approaches zero.

OLS VOLATILITY FORECAST REGRESSIONS

Christenson and Prabhala (1998) and Fleming, Ostdiek, and Whaley
(1995) point out that implied volatilities may contain observation errors
that could affect regressions using implied volatility as an independent
variable. However, Fleming, Ostdiek, and Whaley (1995) argue that
observation error is minimized in CBOE volatility indexes because an
equal number of call and put options are used to compute volatility index
values. Nevertheless, as discussed in the previous section, CBOE
implied volatilities may still contain forecast errors that could affect
regressions using implied volatility as an independent variable.

Christenson and Prabhala (1998) and Strunk-Hansen (2001) use log-
transformed data in their regressions, i.e., ln(VOLm) and ln(IVOLm). This
transformation brings the skewness and kurtosis of their volatility data
closer to that of a normal distribution. Table I reveals that this is also the
case for the data used in this study. However, Fleming (1998), Fleming,
Ostdiek, and Whaley (1995) and other studies use untransformed volatility
data. There are reasons to support the use of both log-transformed and
untransformed volatility data. Consequently, we perform parallel regres-
sions using both the original volatility measures VOLm and IVOLm, and the
log-transformed volatility measures ln(VOLm) and ln(IVOLm).

Univariate Forecast Regressions

Table III contains empirical results from both univariate and multivariate
forecast regressions. We first focus on univariate regressions comparing

� Cov2(sm , sm�1)

 D � [Var(sm) � Var(jm�1)][Var(sm�1) � Var(xm�1)]

 lim
MS�

b2 �
Cov(sm, sm�1)Var(jm�1)

D

 lim
MS�

b1 � 1 �
Var(jm�1)[Var(sm�1) � Var(xm�1)]

D
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TABLE III

OLS Regressions with Realized Volatility and Implied Volatility 

Adj. Chi-square B-G
Intercept IVOLm�1 VOLm�1 R2 (p value) (p value)

Panel A: S&P 100 January 1988–December 1994

S&P 100 3.076 0.639 0.350 79.37 2.83
VOLm (1.516) (0.087) (0.000) (0.093)

8.871 0.344 0.124 62.82 2.24
(1.412) (0.088) (0.000) (0.134)

3.013 0.864 �0.248 0.375 4.94 0.49
(1.398) (0.135) (0.109) (0.085) (0.484)

S&P 100 0.312 0.814 0.395 87.46 2.64
ln(VOLm) (0.281) (0.097) (0.000) (0.105)

1.344 0.480 0.186 39.28 7.15
(0.232) (0.086) (0.000) (0.008)

0.266 0.971 �0.149 0.399 1.29 1.38
(0.291) (0.160) (0.119) (0.523) (0.240)

Panel B: S&P 100 January 1995–December 2003

S&P 100 �0.736 0.894 0.510 30.64 4.02
VOLm (1.755) (0.081) (0.000) (0.045)

6.931 0.625 0.357 31.79 5.35
(1.382) (0.065) (0.000) (0.021)

�0.602 0.829 0.068 0.507 3.98 4.50
(1.720) (0.132) (0.114) (0.137) (0.034)

S&P 100 �0.561 1.119 0.600 49.79 1.99
ln(VOLm) (0.281) (0.089) (0.000) (0.158)

0.845 0.710 0.484 24.53 5.13
(0.178) (0.059) (0.000) (0.024)

�0.443 0.970 0.118 0.600 7.54 0.92
(0.289) (0.165) (0.113) (0.023) (0.338)

Panel C: S&P 500 January 1990–December 1994

S&P 500 2.517 0.637 0.436 71.51 0.07
VOLm (1.308) (0.083) (0.000) (0.792)

6.515 0.455 0.208 49.26 4.82
(1.079) (0.081) (0.000) (0.028)

2.474 0.699 �0.070 0.428 5.17 0.09
(1.319) (0.139) (0.127) (0.076) (0.764)

S&P 500 0.238 0.818 0.404 76.42 0.07
ln(VOLm) (0.334) (0.119) (0.000) (0.787)

1.236 0.498 0.236 31.48 4.47
(0.235) (0.093) (0.000) (0.035)

0.228 0.812 0.016 0.406 1.47 0.15
(0.309) (0.159) (0.109) (0.481) (0.703)

(Continued )
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TABLE III

OLS Regressions with Realized Volatility and Implied Volatility (Continued)

Adj. Chi-square B-G
Intercept IVOLm�1 VOLm�1 R2 (p value) (p value)

Panel D: S&P 500 January 1995–December 2003

S&P 500 �2.051 0.979 0.468 19.90 5.33
VOLm (1.923) (0.096) (0.000) (0.021)

6.400 0.636 0.367 28.51 4.62
(1.310) (0.067) (0.000) (0.032)

�1.694 0.851 0.128 0.473 5.75 2.85
(1.897) (0.164) (0.132) (0.057) (0.092)

S&P 500 �0.647 1.160 0.559 31.77 2.90
ln(VOLm) (0.319) (0.103) (0.010) (0.088)

0.795 0.722 0.494 22.71 4.86
(0.172) (0.058) (0.000) (0.028)

�0.369 0.817 0.266 0.570 13.51 0.48
(0.318) (0.184) (0.118) (0.001) (0.487)

Panel E: Nasdaq 100 January 1995–December 2003

Nasdaq 100 �0.755 0.985 0.704 3.09 3.17
VOLm (3.031) (0.082) (0.213) (0.075)

11.273 0.678 0.486 22.82 8.60
(2.490) (0.067) (0.000) (0.003)

�2.244 1.172 �0.146 0.710 1.95 1.95
(3.082) (0.131) (0.091) (0.377) (0.163)

Nasdaq 100 �0.171 1.032 0.711 7.71 1.15
ln(VOLm) (0.248) (0.068) (0.021) (0.285)

0.908 0.744 0.533 18.05 14.55
(0.211) (0.059) (0.000) (0.001)

�0.259 1.180 �0.125 0.712 2.08 0.35
(0.258) (0.126) (0.092) (0.353) (0.554)

Note. OLS regressions of realized volatility (VOLm) on lagged CBOE implied volatility and lagged realized
volatility. Multivariate regressions have this general form (with log-volatilities substituted in logarithmic regres-
sions), where IVOLm denotes either VXOm , VIXm , or VXNm , respectively, for the S&P 100, S&P 500, or Nasdaq
100 volatility index as appropriate.

VOLm � a0 � a1IVOLm�1 � a2VOLm�1

Newey-West standard errors are reported in parentheses. Chi-square (p value) corresponds to a null hypothe-
sis of zero intercept and unit slope (a0 � 0, a1 � 1) in univariate regressions; and a null of zero intercept and unit
slope for implied volatility in multivariate regressions. B-G (p value) indicates a Breusch-Godfrey test for auto-
correlated regression residuals.

the ability of realized and implied volatility to forecast future realized
volatility. In Table III, regression parameter estimates are reported in
columns two through four, with Newey and West (1987) standard errors
shown in parentheses below each regression coefficient. We found no
significant differences affecting our conclusions using either ordinary
least squares or White (1980) standard errors. Column five lists adjusted
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R-squared statistics for each regression. Column six reports chi-square
statistics based on the Newey and West (1987) covariance matrix testing
the joint null hypothesis of a zero intercept and unit slope. The corre-
sponding p values appear in parentheses under each chi-square statistic.
The last column lists Breusch (1978) and Godfrey (1978) statistics test-
ing for serial dependencies in regression residuals, with corresponding
p values in parentheses below each statistic. We first discuss results
obtained from S&P 100 volatility measures and then follow with the S&P
500 and Nasdaq 100 volatility measures.

S&P 100 Univariate Regressions

Panels A and B of Table III report regression results for the S&P 100
index over the periods 1988–1994 and 1995–2003, respectively. In the
period 1988–1994, regressions of current volatility on lagged volatility
(VOLm on VOLm�1 and ln(VOLm) on ln(VOLm�1)) yield slope coefficients
of just 0.344 and 0.480, respectively. Slope coefficients for regressions of
current volatility on implied volatility (VOLm on VXOm�1 and ln(VOLm)
on ln(VXOm�1)) yield higher slope coefficients of 0.639 and 0.814,
respectively, though these are still significantly less than one.

For the period 1995–2003, panel B reveals that regressions of cur-
rent on lagged realized volatility (VOLm on VOLm�1 and ln(VOLm) on
ln(VOLm�1)) yield slope coefficients of 0.625 and 0.710, respectively,
both significantly less than one. By contrast, regressions of current real-
ized volatility on implied volatility (VOLm on VXOm�1 and ln(VOLm) on
ln(VXOm�1)) yield slope coefficients of 0.894 and 1.119, respectively—
both insignificantly different from one. However, Newey-West chi-
square statistics of 30.64 and 49.79 for both regressions reject the joint
null hypothesis of a zero intercept and unit slope.

Figures 4 and 5 provide scatter plots of S&P 100 realized volatility
VOLm against implied volatility VIXm�1 for the periods 1988–1994 and
1995–2003, respectively. For reference, both figures contain a solid line
with zero intercept and unit slope along with a dashed line representing
an OLS fit to the data. In Figure 3, which corresponds to the period
1988–1994, the significant bias of the OLS slope coefficient is visually
obvious. However, in Figure 4, representing the period 1995–2003, the
dashed OLS line is nearly parallel to the solid unit slope reference line.

S&P 500 Univariate Regressions

Panels C and D of Table III report regression results for the S&P 500
index over the periods 1990–1994 and 1995–2003, respectively. In the
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period 1990–1994, regressions of current on lagged volatility (VOLm on
VOLm�1 and ln(VOLm) on ln(VOLm�1)) yield slope coefficients of just
0.455 and 0.498, respectively. Regressions of current on implied
volatility (VOLm on VIXm�1 and ln(VOLm) on ln(VIXm�1)) yield higher
slope coefficients of 0.637 and 0.818, respectively, though still both
significantly less than one.

FIGURE 4
S&P 100 Index (1988–1994).
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FIGURE 5
S&P 100 Index (1995–2003).

5

10

15

20

10 12 14 16 18 20

Implied volatility (%)

R
ea

liz
ed

 V
ol

at
ili

ty
 (

%
)

OLS 

	 = 0, 
 = 1



Implied Volatility Indexes 355

For the period 1995–2003, panel D reveals that regressing current
on lagged volatility realized (VOLm on VOLm�1 and ln(VOLm) on
ln(VOLm�1)) yields slope coefficients of 0.636 and 0.722, respectively,
both significantly less than one. However, regressing current realized
volatility on implied volatility (VOLm on VIXm�1 and ln(VOLm) on
ln(VIXm�1)) yields slope coefficients of 0.979 and 1.160, respectively—
both insignificantly different from one. Nevertheless, Newey-West chi-
square statistics of 19.90 and 31.77 for both regressions reject the joint
null hypothesis of a zero intercept and unit slope.

Figures 6 and 7 provide scatter plots of S&P 500 realized volatility
VOLm against implied volatility VIXm�1 for the periods 1990–1994 and
1995–2003, respectively. In both figures, the solid line has a zero inter-
cept and unit slope and the dashed line represents an OLS fit to the data.
In Figure 6, corresponding to the period 1990–1994, the significant bias
of the OLS slope is readily apparent. However, in Figure 7, representing
the period 1995–2003, the dashed OLS line is nearly parallel to the solid
unit slope reference line.

Nasdaq 100 Univariate Regressions

Panel E of Table III reports regression results for the Nasdaq 100 index
over the period 1995–2003. For this period, regressions of current
volatility on lagged volatility (VOLm on VOLm�1 and ln(VOLm) on

FIGURE 6
S&P 500 Index (1990–1994).
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FIGURE 7
S&P 500 Index (1995–2003).
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ln(VOLm�1)) yield slope coefficients of 0.678 and 0.744, respectively. In
contrast, slope coefficients for regressions of current realized volatility
on implied volatility (VOLm on VXNm�1 and ln(VOLm) on ln(VXNm�1))
yield slope coefficients of 0.985 and 1.032, respectively—both close to
one. The Newey-West chi-square statistic of 3.09 for the implied volatil-
ity regression is insignificant, but the chi-square statistic of 7.71 for the
corresponding log-regression rejects the joint null hypothesis of a zero
intercept and unit slope at the 5-percent significance level.

Figure 8 provides a scatter plot of Nasdaq 100 realized volatility
VOLm against implied volatility VXNm�1 for the period 1995–2003. The
dashed OLS regression line in this figure is approximately congruent
with the solid reference line with zero intercept and unit slope. Thus the
Nasdaq 100 regression results reported in Table III and displayed in
Figure 8 yield strong graphic support for the Nasdaq 100 volatility index
as an efficient predictor of future realized volatility.

Multivariate Forecast Regressions

S&P 100 Multivariate Regressions

Panel A of Table III reports multivariate regression results using both
log-transformed and untransformed volatility data for the S&P 100 index
from the period 1988–1994. Regressing current realized volatility VOLm
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on lagged implied volatility VXOm�1 and lagged realized volatility VOLm�1

yields slope coefficients of 0.864 and �0.248, respectively. The chi-
square statistic of 4.94 for this regression does not reject the joint null
hypothesis of a zero intercept and slope coefficient of one for implied
volatility at the 5% significance level. The regression of ln(VOLm) on
ln(VXOm�1) and ln(VOLm�1) yields slope coefficients of 0.971 and
�0.149, respectively, and a chi-square statistic of 1.29 that does not
reject the joint null of a zero intercept and slope coefficient of one for
ln(VIXm�1). Insignificant Breusch-Godfrey statistics for these multivari-
ate regressions do not indicate the presence of significant serial depend-
ence in regression residuals.

Multivariate regression results for S&P 100 volatility for the period
1995–2003 are reported in panel B of Table III. Regressing VOLm on
VXOm�1 and VOLm�1 yields slope coefficients of 0.829 and 0.068,
respectively. Again, the chi-square statistic of 3.98 does not reject the
joint null hypothesis of a zero intercept and unit slope coefficient for
implied volatility, although the Breusch-Godfrey statistic indicates sig-
nificant sample dependence in the residuals for this regression.
The regression of ln(VOLm) on ln(VXOm�1) and ln(VOLm�1) yields slope
coefficients of 0.970 and 0.118, respectively. However, the chi-square
statistic of 7.54 rejects the joint null of a zero intercept and unit
slope coefficient for ln(VXOm�1).

FIGURE 8
Nasdaq 100 Index (1995–2003).
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An important aspect of the regressions based on S&P 100 volatility
data is the fact that adjusted R-squared values from multivariate regres-
sions do not exhibit substantial differences from adjusted R-squared val-
ues obtained from univariate regressions using only the implied volatility
measures VXOm�1 or ln(VXOm�1) as independent variables. Thus, on the
basis of adjusted R-squared values, adding independent variables beyond
implied volatility does not appear to improve the explanatory power of
the regressions.

S&P 500 Multivariate Regressions

Panel C of Table III reports multivariate regression results using log-
transformed and untransformed volatility data for the S&P 500 index for
the period 1990–1994. Here, regressing current realized volatility VOLm

on lagged implied volatility VIXm�1 and lagged realized volatility VOLm�1

yields slope coefficients of 0.699 and �0.070, respectively. The chi-
square statistic of 5.17 does not reject the joint null hypothesis of a zero
intercept and slope coefficient of one for implied volatility at conven-
tional significance levels. Regressing ln(VOLm) on ln(VIXm�1) and
ln(VOLm�1) yields slope coefficients of 0.812 and 0.016, respectively,
and a chi-square statistic of 1.47 that does not reject the joint null of a
zero intercept and slope coefficient of one for ln(VIXm�1). Breusch-
Godfrey statistics for these multivariate regressions do not indicate the
presence of significant serial dependencies in residuals.

Multivariate regression results for S&P 500 volatility for the period
1995–2003 are reported in panel D of Table III. Regressing VOLm on
VIXm�1 and VOLm�1 yields slope coefficients of 0.851 and 0.128, respec-
tively, and the chi-square statistic of 5.75 does not reject the joint null of
a zero intercept and unit slope coefficient for implied volatility.
Regressing ln(VOLm) on ln(VIXm�1) and ln(VOLm�1) yields slope coeffi-
cients of 0.817 and 0.266, respectively. However, the chi-square statistic
of 13.51 rejects the joint null of a zero intercept and unit slope coeffi-
cient for ln(VIXm�1).

Similar to the S&P 100 volatility regressions, these S&P 500 volatil-
ity regressions also possess the property that adjusted R-squared values
from multivariate regressions do not exhibit substantial differences from
adjusted R-squared values from univariate regressions using only
implied volatility measures as independent variables. Thus, for the
S&P 500 volatility regressions, adding independent variables beyond
implied volatility does not appear to improve explanatory power.
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Nasdaq 100 Multivariate Regressions

Results from multivariate regressions for the Nasdaq 100 for the period
1995–2003 are reported in Panel E of Table III. The regression of VOLm

on VXNm�1 and VOLm�1 yields slope coefficients of 1.172 and �0.146,
respectively, with corresponding standard errors of 0.131 and 0.091. The
chi-square statistic of 1.95 does not reject the joint null hypothesis of a
zero intercept and unit slope coefficient for implied volatility. Regressing
of ln(VOLm) on ln(VXNm�1) and ln(VOLm�1) yields slope coefficients of
1.180 and �0.125, respectively, and the chi-square statistic of 2.08 does
not reject the joint null hypothesis of a zero intercept and unit slope for
ln(VXNm�1). Breusch-Godfrey statistics for these multivariate regres-
sions are not significant.

Nasdaq 100 volatility regressions also have the property that adjusted
R-squared values from multivariate regressions are not substantially dif-
ferent from adjusted R-squared values obtained from univariate regres-
sions with only implied volatility as an independent variable. Thus, for all
three indexes in all periods examined, it does not appear that adding
independent variables beyond implied volatility improves the explanatory
power of the regressions.

INSTRUMENTAL VARIABLE REGRESSIONS

The econometric problem of errors in explanatory variables is widely
accepted as an impediment to assessing the forecast quality of implied
volatility. The standard econometric approach to dealing with this prob-
lem is the use of instrumental variables (see, for example, Greene
(1993), Johnston (1984), or Maddala (1977)). Drawing on the analysis
in Greene (1993), Christensen and Prabhala (1998) propose using
lagged implied volatility as an instrument for implied volatility.

Instrumental Variables Procedure

To maximize the precision of the instrumental variables methodology, we
employ several instruments in addition to lagged implied volatility. For
example, the first-stage instrumental variables regression for the VXN
volatility index for the period 1995–2003 is specified immediately below.

(16)� c4 � VRSNDX
m�2 � c5 � VIXm�2 � c6 � VXOm�2

VXNm�1 � c0 � c1 � VXNm�2 � c2 � VOLNDX
m�2 � c3 � VPANDX

m�2
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In Equation (16) above, the variable VOLm was defined in Equation (1).
The variable VPAm denotes an estimate of volatility in month m using the
method proposed by Parkinson (1980). In the current context, these esti-
mates are calculated as shown in Equation (17), in which Hd,m and Ld,m

represent high and low index levels, respectively, observed on day d in
month m.

(17)

The variable VRSm denotes an estimate of volatility in month m using the
method suggested by Rogers and Satchel (1991). These estimates are
calculated as shown in Equation (18), in which Hd,m and Ld,m are as
defined above and Od,m and Cd,m represent index levels observed at the
open and close, respectively, on day d in month m.

(18)

The first-stage instrumental variables regressions for the VIX and
VXO volatility indexes in the period 1995–2003 are specified analogously
in Equations (19) and (20) immediately below.

(19)

(20)

Because of data limitations for some instruments, first-stage instru-
mental variables regressions for the VIX volatility index in the period
1990–1994 and the VXO volatility index in the period 1988–1994 are
specified as shown in Equations (21) and (22).

(21)

(22)� c6 � (1 � I(m)) � VOLOEX
m�3 � c7 � VIXm�3

� c4 � VRSOEX
m�2 � c5 � I(m) � VIXm�2

VXOm�1 � c0 � c1 � VXOm�2 � c2 � VOLOEX
m�2 � c3 � VPAOEX

m�2

� c4 � VRSSPX
m�2 � c5 � VXOm�2 � c6 � VIXm�3

VIXm�1 � c0 � c1 � VIXm�2 � c2 � VOLSPX
m�2 � c3 � VPASPX

m�2

� c4 � VRSOEX
m�2 � c5 � VIXm�2 � c6 � VXNm�2

VXOm�1 � c0 � c1 � VXOm�2 � c2 � VOLOEX
m�2 � c3 � VPAOEX

m�2

� c4 � VRSSPX
m�2 � c5 � VXOm�2 � c6 � VXNm�2

VIXm�1 � c0 � c1 � VIXm�2 � c2 � VOLSPX
m�2 � c3 � VPASPX

m�2

VRSm � B
30
22

� 252a
nm

d�1
lnaHd,m

Od,m
b � lnaHd,m

Cd,m
b � lna Ld,m

Od,m
b � lna Ld,m

Cd,m
b

VPAm � B
30
22

�
252

4 ln 2a
nm

d�1
ln2aHd,m

Ld,m
b
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For the VXO 1988–1994 instrumental variable regression above, the
indicator function I(m) � 1 if month m is in the period 1990–1994 and
is zero otherwise.

Table IV reports the results from the second stage of the instrumen-
tal variables procedures. Separate results are reported for the S&P 100
from the periods 1988–1994 and 1995–2003, the S&P 500 from the
periods 1990–1994 and 1995–2003, and for the Nasdaq 100 from the
period 1995–2003.

Instrumental Variable Regression Results

S&P 100 Instrumental Variable Regressions

Panel A of Table IV reports univariate and multivariate instrumental
variable regression results based on the S&P 100 index for the period
1988–1994. The univariate regression of realized volatility VOLm on
the implied volatility instrument VXOm�1 yields a slope coefficient of
0.860, which is not significantly less than one. The univariate regres-
sion of log volatility ln(VOLm) on the log-implied volatility instrument
ln(VIXm�1) yields a slope coefficient of 1.043. However, the chi-square
statistics of 56.29 and 65.23 reject the joint null hypotheses of a zero
intercept and unit slope in both regressions.

The multivariate regression of realized volatility VOLm on the
implied volatility instrument VXOm�1 and lagged volatility VOLm�1 yields
slope coefficients of 1.102 and �0.238, respectively. The chi-square sta-
tistic of 1.53 for this regression does not reject the joint null hypothesis
of a zero intercept and unit slope for the implied volatility instrument.
The regression of log-volatility ln(VOLm) on the instrument ln(VXOm�1)
and lagged log-volatility ln(VOLm�1) yields slope coefficients of 1.347
and �0.248. However, the chi-square statistic of 14.27 rejects the null
of a zero intercept and unit slope for ln(VXOm�1).

Panel B of Table IV reports univariate and multivariate regression
results for the S&P 100 in the period 1995–2003. The univariate
regression of realized volatility VOLm on the implied volatility instru-
ment VXOm�1 yields a slope coefficient of 1.284 with a standard error of
0.142, indicating a value insignificantly different from one. By contrast,
the univariate regression of log-volatility ln(VOLm) on the log-implied
volatility instrument ln(VXOm�1) yields a slope coefficient of 1.430 with
a standard error of 0.134, indicating a value significantly greater than
one. Chi-square statistics of 50.27 and 82.55 reject the null hypothesis
of a zero intercept and unit slope for both regressions.
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TABLE IV

Instrumental Variable Regressions with Realized Volatility 
and Implied Volatility

Adj. Chi-square B-G
Intercept IVOLm�1 VOLm�1 R2 (p value) (p value)

Panel A: S&P 100 January 1988–December 1994

S&P 100 �0.384 0.860 0.346 56.29 6.05
VOLm (2.482) (0.139) (0.000) (0.014)

�1.096 1.102 �0.238 0.346 1.53 5.82
(2.736) (0.238) (0.170) (0.465) (0.016)

S&P 100 �0.325 1.043 0.395 65.23 4.63
ln(VOLm) (0.440) (0.155) (0.000) (0.031)

�0.532 1.347 �0.248 0.393 14.27 4.11
(0.508) (0.287) (0.177) (0.001) (0.043)

Panel B: S&P 100 January 1995–December 2003

S&P 100 �9.605 1.284 0.570 50.27 7.44
VOLm (3.539) (0.142) (0.000) (0.006)

�10.676 1.408 �0.090 0.566 36.43 7.38
(4.179) (0.266) (0.159) (0.000) (0.007)

S&P 100 �1.523 1.430 0.634 82.55 3.79
ln(VOLm) (0.424) (0.134) (0.000) (0.052)

�1.508 1.418 0.008 0.631 62.21 4.08
(0.498) (0.258) (0.145) (0.000) (0.043)

Panel C: S&P 500 January 1990–December 1994

S&P 500 �0.811 0.857 0.428 43.67 12.12
VOLm (2.420) (0.146) (0.000) (0.001)

�1.571 1.111 �0.254 0.424 2.17 11.83
(2.800) (0.294) (0.236) (0.338) (0.001)

S&P 500 �0.447 1.076 0.397 50.10 6.97
ln (VOLm) (0.520) (0.189) (0.000) (0.008)

�0.564 1.225 �0.115 0.387 9.21 6.89
(0.592) (0.344) (0.212) (0.010) (0.009)

Panel D: S&P 500 January 1995–December 2003

S&P 500 �11.157 1.410 0.576 46.10 7.39
VOLm (3.690) (0.161) (0.000) (0.007)

�13.024 1.614 �0.133 0.574 40.97 7.15
(4.740) (0.327) (0.178) (0.000) (0.008)

S&P 500 �1.722 1.514 0.636 77.29 3.38
ln(VOLm) (0.455) (0.148) (0.000) (0.066)

�1.732 1.522 �0.004 0.633 62.45 4.31
(0.563) (0.296) (0.156) (0.000) (0.038)
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TABLE IV

(Continued)

Adj. Chi-square B-G
Intercept IVOLm�1 VOLm�1 R2 (p value) (p value)

Panel E: Nasdaq 100 January 1995–December 2003

Nasdaq 100 �9.713 1.226 0.729 32.49 2.45
VOLm (3.918) (0.091) (0.000) (0.117)

�11.476 1.454 �0.188 0.728 40.89 1.62
(4.473) (0.201) (0.140) (0.000) (0.203)

Nasdaq 100 �0.634 1.162 0.714 50.54 2.64
ln(VOLm) (0.313) (0.085) (0.000) (0.104)

�0.739 1.319 �0.130 0.712 47.24 2.49
(0.351) (0.192) (0.138) (0.000) (0.115)

Note. Instrumental variable regressions of realized volatility (VOLm) on lagged CBOE implied volatility and
lagged realized volatility. Here, IVOLm denotes either VXOm, VIXm, or VXNm, respectively, for the S&P 100, S&P
500, or Nasdaq 100 volatility index as appropriate. Regressions have the general form specified below, in which
hat notation (IVOL) denotes the generated implied volatility from a first stage instrumental variables regression.

VOLm � b0 � b1 � IVOLm�1 � b2 � VOLm�1

Newey-West standard errors are reported in parentheses. Chi-square (p value) corresponds to a null hypothe-
sis of zero intercept and unit slope (b0 � 0, b1 � 1) in univariate regressions; and a null of zero intercept and unit
slope for implied volatility in multivariate regressions. B-G (p value) indicates a Breusch-Godfrey test for
autocorrelation in regression residuals.

The multivariate regression of realized volatility VOLm on the
implied volatility instrument VXOm�1 and lagged volatility VOLm�1 yields
slope coefficients of 1.408 and �0.090, respectively, and the chi-square
statistic of 36.43 for this regression rejects the null of a zero intercept
and unit slope for the implied volatility instrument. The regression of
log-volatility ln(VOLm) on the instrument ln(VXOm�1) and lagged log-
volatility ln(VOLm�1) yields slope coefficients of 1.418 and 0.008,
respectively, and the chi-square statistic of 62.21 rejects the null of a zero
intercept and unit slope for the instrument ln(VXOm�1).

S&P 500 Instrumental Variable Regressions

Panel C of Table IV reports results from univariate and multivariate
instrumental variable regressions based on the S&P 500 index for the
period 1990–1994. The univariate regression of realized volatility VOLm

on the implied volatility instrument VIXm�1 yields a slope coefficient of
0.857, which is not significantly less than one. The univariate regres-
sion of log-volatility ln(VOLm) on the log-implied volatility instrument
ln(VIXm�1) yields a slope coefficient of 1.076 not significantly different
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from one. Nevertheless, the chi-square statistics of 43.67 and 50.10
reject the null hypothesis of a zero intercept and unit slope in both uni-
variate regressions.

The multivariate regression of realized volatility VOLm on the
implied volatility instrument VIXm�1 and lagged volatility VOLm�1 yields
slope coefficients of 1.111 and �0.254, respectively. The chi-square sta-
tistic of 2.17 for this regression does not reject the joint null hypothesis
of a zero intercept and unit slope for the implied volatility instrument.
The regression of log-volatility ln(VOLm) on the instrument ln(VIXm�1)
and lagged log-volatility ln(VOLm�1) yields slope coefficients of 1.225
and �0.115. The chi-square statistic of 9.21 for this regression rejects
the null of a zero intercept and unit slope for the instrument ln(VIXm�1).

Panel D of Table IV reports univariate and multivariate regression
results for the S&P 500 from the period 1995–2002. The univariate
regression of realized volatility VOLm on the implied volatility instrument
VIXm�1 yields a slope coefficient of 1.410 with a standard error of 0.161,
indicating a value significantly greater than one. The univariate regres-
sion of log-volatility ln(VOLm) on the log-implied volatility instrument
ln(VIXm�1) yields a slope coefficient of 1.514 with a standard error of
0.148, indicating a value significantly greater than one. Chi-square sta-
tistics of 46.10 and 77.29 reject the null hypothesis of a zero intercept
and unit slope for both regressions.

The multivariate regression of realized volatility VOLm on the
implied volatility instrument VIXm�1 and lagged volatility VOLm�1 yields
slope coefficients of 1.614 and �0.133, respectively, and the chi-square
statistic of 40.97 for this regression rejects the null of a zero intercept
and unit slope for the implied volatility instrument. The regression of
log-volatility ln(VOLm) on the instrument ln(VIXm�1) and lagged log-
volatility ln(VOLm�1) yields slope coefficients of 1.522 and �0.004,
respectively. The chi-square statistic of 62.45 rejects the null of a zero
intercept and unit slope for the instrument ln(VIXm�1).

Nasdaq 100 Instrumental Variable Regressions

Panel E of Table IV reports univariate and multivariate instrumental
variable regression results for the Nasdaq 100 from the period 1995–
2003. The univariate regression of realized volatility VOLm on the
implied volatility instrument VXNm�1 yields a slope coefficient of 1.226
with a standard error of 0.091, indicating a slope significantly greater
than one. The univariate regression of log-volatility ln(VOLm) on the log-
implied volatility instrument ln(VXNm�1) yields a slope coefficient of
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1.162 with a standard error of 0.085, suggesting a slope significantly
greater than one. Chi-square statistics of 32.49 and 50.54 reject the null
hypothesis of a zero intercept and unit slope for both implied volatility
instruments.

The multivariate regression of realized volatility VOLm on the
implied volatility instrument VXNm�1 and lagged volatility VOLm�1 yields
slope coefficients of 1.454 and �0.188. The chi-square statistic of 40.89
for this regression rejects the joint null of a zero intercept and unit slope
for the implied volatility instrument. The regression of log-volatility
ln(VOLm) on the instrument ln(V̂XNm�1) and lagged log-volatility
ln(VOLm�1) yields slope coefficients of 1.319 and �0.130. The chi-square
statistic for this regression of 47.24 rejects the null of a zero intercept and
unit slope for the instrument ln( ˆVXNm�1).

Comparing Conventional OLS 
and Instrumental Regressions

A comparison of regression results reported in panel A of Tables III and
IV for the S&P 100 index for the period 1988–1994 reveals that the
instrumental variables procedures yielded noticeable improvements
upon the standard OLS regressions. Specifically, in panel A of Table IV,
the regression slope coefficients for implied volatility instruments are
typically closer to a value of one than the corresponding OLS coefficient
values in panel A of Table III. An exception occurs within the multivari-
ate log-regressions, where the implied volatility slope coefficient of 0.971
for the multivariate log-regression in Table III is much closer to a value
of one than the corresponding implied volatility instrument coefficient of
1.347 in panel A of Table IV.

By contrast, panel B in Tables III and IV reveal that instrumental
variables procedures did not improve upon standard OLS regressions in
the period 1995–2003. Implied volatility slope coefficients in panel B of
Table III obtained from standard OLS regressions are all closer to a value
of one than the implied volatility slope coefficients in panel B of Table IV
obtained from instrumental variables procedures. Thus for the S&P 100
volatility data, while the instrumental variables procedures improved
regression results in the period 1988–1994, they did not improve regres-
sion results in the period 1995–2003.

Comparing regression results reported in panel C of Tables III and
IV for the S&P 500 index in the period 1990–1994 reveals that instru-
mental variables procedures typically improved upon standard OLS
regressions. In panel C of Table IV, slope coefficients for implied
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volatility obtained from instrumental variables procedures are typically
closer to a value of one than corresponding slope coefficient values in
panel C of Table III obtained from standard OLS regressions. A single
exception occurs within the multivariate log-regressions, where the stan-
dard OLS slope coefficient of 0.812 for implied volatility in the multi-
variate log-regression in Table III is slightly closer to a value of one than
the corresponding implied volatility instrument coefficient of 1.225 in
panel C of Table IV.

However, comparing panel D in Tables III and IV reveals that
instrumental variables procedures did not improve upon standard OLS
regressions for the S&P 500 index in the period 1995–2003. Implied
volatility slope coefficients in panel D of Table III obtained from stan-
dard OLS regressions are all closer to a value of one than corresponding
implied volatility coefficients in panel D of Table IV obtained from
instrumental variables procedures. Thus, for the S&P 500 volatility data,
instrumental variables procedures improved regression results in the
period 1990–1994, but did not improve results in the period 1995–
2003.

Comparing panel E in Tables III and IV reveals that instrumental
variables procedures also did not improve upon standard OLS regres-
sions for the Nasdaq 100 volatility data. Implied volatility slope coeffi-
cients in panel E of Table III obtained from standard OLS regressions
are all closer to a value of one than implied volatility slope coefficients in
panel E of Table IV obtained from instrumental variables procedures.
Thus, for the Nasdaq 100 volatility data in the period 1995–2003,
instrumental variables procedures did not improve upon regression
results obtained from standard OLS regressions.

In summary, attempts to correct an errors-in-variables attenuation
bias via instrumental variable regressions appear to have only been effec-
tive for volatility data from the S&P 100 index in the period 1988–1994
and the S&P 500 index in the period 1990–1994. For these data sam-
ples, instrumental variables procedures typically yielded regression slope
coefficients for implied volatility closer to a value of one than did stan-
dard OLS regressions. In contrast, for volatility data from the S&P 100,
S&P 500, and Nasdaq 100 indexes in the period 1995–2003 instrumen-
tal variables procedures always yielded slope coefficients for implied
volatility farther from a value of one than did standard OLS regressions.
This suggests that attenuation biases caused by errors-in-variables
effects on implied volatilities composing the CBOE volatility indexes has
largely disappeared since 1995.
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SIGNIFICANCE OF THE FORECAST
ERROR VARIANCE

As suggested by the framework developed in the third section of this
paper, a test for a significant forecast error variance Var(jm�1) is obtained
from a univariate regression of realized volatility VOLm on implied
volatility IVOLm�1. Equation (10) implies that one minus the slope
coefficient of the regression of VOLm on IVOLm�1 yields the following
equality:

(23)

In finite samples, the left-hand side of Equation (23) could be negative.
Despite this, a one-sided test for a positive forecast error variance, i.e.,
Var(jm�1) > 0, is equivalent to a test for an OLS slope coefficient bOLS

significantly less than one. The required regression statistics for this test
are reported in Table III.

From panel A of Table III for the 1988–1994 S&P 100 sample, we
see that the slope coefficient of 0.639 with a standard error of 0.087
indicates rejection of the null hypothesis of bOLS � 1. Similarly for the
S&P 500 index, from panel C, the slope coefficient 0.637 with a stan-
dard error of 0.083 is significantly less than one. Thus, we appear to
observe significantly positive forecast error variances for our pre-1995
samples. By contrast, in panels B, D, and E of Table III corresponding to
the S&P 100, S&P 500, and Nasdaq 100 samples from the 1995–2003
period, the slope coefficients of 0.894, 0.979, and 0.985, respectively, do
not reject the null hypothesis of bOLS � 1. Thus, while the CBOE volatil-
ity indexes VXO and VIX appear to contain significant forecast errors in
the pre-1995 period, we find no indication of significant forecast error
variances for any of the CBOE volatility indexes in the period
1995–2003.

A GARCH PERSPECTIVE

Influential studies by Canina and Figlewski (1993), Christensen and
Prabhala (1998), Day and Lewis (1992), and Lamoureux and Lastrapes
(1993) examine of the accuracy of implied volatility forecasts using lin-
ear econometric models. This contrasts with the many studies of volatil-
ity forecasts based on autoregressive conditional heteroscedasticity
(ARCH) models. Following Blair, Poon, and Taylor (2001), we here
adopt the GJR-GARCH(1,1) model developed by Glosten et al. (1993)

1 � bOLS(VOLm, IVOLm�1) �
Var(jm�1)

Var(IVOLm�1)
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and Zakoian (1990) to evaluate the forecast quality of the CBOE implied
volatility indexes. Our analysis is based on these three models:

Model 1, full GJR-GARCH model augmented with implied volatility

(24)

Model 2, standard GJR-GARCH model

(25)

Model 3, conditional volatility as a function of only implied volatility

(26)

Model 1 imposes no coefficient restrictions, while models 2 and 3
impose the restrictions a4 � 0 and a1 � a2 � a3 � 0, respectively, that
define the null hypotheses to be tested. Model 2 tests the null hypothe-
sis H0: a4 � 0 that implied volatility does not significantly improve fore-
casts beyond that provided by the GJR-GARCH model. Model 3 tests the
null hypothesis H0: a1 � a2 � a3 � 0 that the GJR-GARCH model does
not significantly improve upon implied volatility forecasts.

Table V reports results obtained from each of the three models for
all three stock indexes. Table V reveals that the coefficients a1, a2, a3 for
model 1 are typically insignificantly different from zero, which suggests
that implied volatility dominates as a predictor of future volatility.
However, there are two exceptions. The most notable is observed in
panel A for the S&P 100 index in the period 1988–1994 for which the
coefficients a1, a2, a3 are all more than two standard errors away from
zero. Another exception is seen in panel D for the S&P 500 index in the
period 1995–2003, for which the coefficient a2 is more than two stan-
dard errors greater than zero. By contrast, the coefficient a4 for implied
volatility is significant across all indexes and test periods. Thus, results
obtained from model 1 suggest that implied volatility dominates realized
volatility as a forecast of future volatility.

Table VI provides the results of tests of the restrictions leading to
model 2 and model 3. In Table VI, F statistics in column 2 and their
corresponding p values in column 3 indicate that the null hypothesis H0:
a4 � 0 is rejected across all stock indexes and time periods examined.
Thus, the null hypothesis that implied volatility does not significantly
improve forecasts from the GJR-GARCH specification is rejected for all
samples examined. F statistics in column 4 and corresponding p values
in column 5 indicate that the null hypothesis H0: a1 � a2 � a3 � 0 is
rejected only in the case of the S&P 100 index in the period 1988–1994.

h2
m � a0 � a4IVOL2

m�1

h2
m � a0 � a1VOL2

m�1 � a2Sm�1VOL2
m�1 � a3h

2
m�1

h2
m � a0 � a1VOL2

m�1 � a2Sm�1VOL2
m�1 � a3h

2
m�1 � a4IVOL2

m�1
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TABLE V

GJR-GARCH Regressions with Realized Volatility and Implied Volatility

Intercept VOL2
m�1 Sm�1VOL2

m�1 h2
m�1 IVOL2

m�1 Adj. R2

Panel A: S&P 100 January 1988–December 1994

S&P 100 3.070 �0.660 0.217 1.127 0.314 0.508
VOL2

m (32.423) (0.114) (0.092) (0.184) (0.135)

7.339 �0.359 0.381 1.122 0.409
(32.896) (0.117) (0.101) (0.168)

83.556 0.464 0.268
(34.641) (0.085)

Panel B: S&P 100 January 1995–December 2003

S&P 100 89.221 �0.025 0.111 �0.200 0.871 0.433
VOL2

m (76.846) (0.167) (0.136) (0.218) (0.181)

124.918 0.032 0.409 0.534 0.358
(83.725) (0.156) (0.124) (0.187)

40.365 0.803 0.403
(70.849) (0.095)

Panel C: S&P 500 January 1990–December 1994

S&P 500 40.383 �0.128 �0.145 �0.173 0.759 0.445
VOL 2

m (32.00) (0.177) (0.146) (0.215) (0.169)

61.267 0.270 0.135 0.332 0.226
(41.394) (0.176) (0.150) (0.206)

41.688 0.510 0.407
(28.64) (0.082)

Panel D: S&P 500 January 1995–December 2003

S&P 500 66.279 �0.060 0.334 0.218 0.501 0.401
VOL 2

m (74.895) (0.164) (0.137) (0.224) (0.196)

107.216 0.065 0.397 0.527 0.358
(75.427) (0.148) (0.120) (0.185)

42.475 0.839 0.364
(67.552) (0.108)

Panel E: Nasdaq 100 January 1995–December 2003

Nasdaq 100 �299.491 �0.073 0.005 �0.094 1.384 0.695
VOL 2

m (194.904) (0.123) (0.097) (0.161) (0.198)

353.937 0.185 0.333 0.453 0.490
(240.893) (0.130) (0.105) (0.144)

�281.584 1.202 0.687
(182.849) (0.079)

Note. GJR-GARCH regressions of realized variance (VOL 2
m) on squared implied volatility (IVOL 2

m), where
IVOLm denotes CBOE implied volatility indexes for the S&P 100 (VXOm), S&P 500 (VIXm), or Nasdaq 100
(VXNm) as appropriate. The GJR-GARCH model augmented by implied volatility is specified as:

h2
m � a0 � a1VOL2

m�1 � a2Sm�1VOL2
m�1 � a3h

2
m�1 � a4IVOL2

m�1

h2
m represents conditional variance and the indicator Sm�1 � 1 if rm � 0, i.e., negative return in month m, and is

zero otherwise. Standard errors are reported in parentheses.
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TABLE VI

Regression Comparisons with Realized and Implied Volatility Measures

H0: a4 � 0 H0: a1 � a2 � a3 � 0

Stock index Time period F statistic p value F statistic p value

S&P 100 1988–1994 19.061 0.000 12.563 0.000
1995–2003 13.430 0.000 1.761 0.159

S&P 500 1990–1994 21.738 0.000 1.179 0.326
1995–2003 6.976 0.010 2.036 0.114

Nasdaq 100 1995–2003 68.342 0.000 0.778 0.509

Note. Comparisons of three ARCH regression models specified as follows:

Model 1: h2
m � a0 � a1VOL2

m�1 � a2Sm�1VOL2
m�1 � a3h

2
m�1 � a4IVOL2

m�1

Model 2: h2
m � a0 � a1VOL2

m�1 � a2Sm�1VOL2
m�1 � a3h

2
m�1

Model 3: h2
m � a0 � a4IVOL2

m�1

Model 1 is the GJR-GARCH model augmented by implied volatility. Model 2 and Model 3 impose the restric-
tions a4 � 0 and a1 � a2 � a3 � 0, respectively, that define the null hypotheses tested. h 2

m represents condi-
tional variance and the indicator Sm�1 � 1 if rm � 0, i.e., negative return in month m, and is zero otherwise.

For all other stock indexes and test periods examined, the null hypothesis
H0: a1 � a2 � a3 � 0 cannot be rejected at conventional significance lev-
els. Thus, the null hypothesis that the GJR-GARCH model does not sig-
nificantly improve upon implied volatility forecasts is rejected only for
the case of S&P 100 index in the period 1988–1994. In all other cases
examined, we cannot reject the null hypothesis that the GJR-GARCH
model did not significantly improve upon implied volatility forecasts.

Overall, the results reported here for the three CBOE implied
volatility indexes VXO, VIX, and VXN are similar to the findings of Blair,
Poon, and Taylor (2001), who report that the VXO implied volatility
index (formerly VIX) provided the most accurate forecasts of S&P 100
index volatility over the period 1993 through 1999 at forecast horizons
ranging from 1 to 20 days when compared to a GJR-GARCH model aug-
mented with intraday realized volatility.

SUMMARY AND CONCLUSION

Assessing the information content and forecast quality of implied volatil-
ity has been an important and ongoing research issue among financial
economists and econometricians. Early assessments lauded the forecast
quality of option-implied volatility, while subsequent investigations
found that option-implied volatility yielded biased and inefficient
forecasts. More recent studies suggest that econometric problems are a
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potential pitfall in assessing the forecast quality of implied volatility, and
in turn propose the use of an instrumental variable methodology.

This study compares the results of standard OLS regressions with
those obtained from instrumental variable regressions. We find that for
volatility data sampled from the period 1995–2003 instrumental vari-
ables procedures do not provide enhanced support for the forecast qual-
ity of implied volatility compared to standard OLS procedures.

The empirical analysis in this study is based on the CBOE implied
volatility indexes VXO, VIX, and VXN, corresponding to options traded
on the S&P 100, S&P 500, and Nasdaq 100 stock indexes, respectively.
These CBOE indexes provide an excellent data source for studies of
implied volatility. Indeed, with the recent release of the new VIX and
VXN volatility indexes for the S&P 500 and Nasdaq 100 stock indexes,
respectively, the CBOE has significantly expanded a valuable data
resource. In this study, we find that the CBOE implied volatility indexes
VXO and VIX yield upwardly biased volatility forecasts, but are still more
efficient in terms of mean squared forecast errors than historical realized
volatility. We also find that the VXN volatility is nearly unbiased and pro-
vides significantly more efficient forecasts than realized volatility.

Further regression analyses reveal that the highest regression 
R-squared values are obtained when implied volatility is an explanatory
variable. Multivariate regressions indicate that adding historical volatili-
ty as an explanatory variable yields only trivial differences in regression
R-squared values. A similar conclusion was reached through a GARCH
analysis of forecast efficiency. Overall, the results reported in this paper
suggest that the CBOE implied volatility indexes VXO, VIX, and VXN
dominate historical index volatility in providing forecasts of future price
volatility for the S&P 100, S&P 500, and Nasdaq 100 stock indexes.
While CBOE implied volatilities appear to contain significant forecast
errors in the pre-1995 period, we find little indication of significant fore-
cast errors in the latter period (1995–2003) of our sample.
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