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ABSTRACT
It is well known that some economic time series can be described by models
which allow for either long memory or for occasional level shifts. In this paper
we propose to examine the relative merits of these models by introducing a
new model, which jointly captures the two features. We discuss representation
and estimation. Using simulations, we demonstrate its forecasting ability, 
relative to the one-feature models, both in terms of point forecasts and inter-
val forecasts. We illustrate the model for daily S&P500 volatility. Copyright
© 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

There appear to be several economic time series, which can be characterized by either long memory
or by occasional level shifts. Examples of these are inflation rates and certain financial volatility
series, see, for example Bos et al. (1999). On the theoretical side, studies like Granger and 
Hyung (2001) and Diebold and Inoue (2001) have shown that apparent long memory can also be
caused by neglected occasional level shifts, while other studies indicate the reversal effects. Hence,
the empirical results for certain economic series should not come as a surprise, as models for long
memory and models for occasional level shifts seem to be able to pick up the same features of em-
pirical data.

In this paper we also consider the two types of models, although our approach differs from all
previous studies in two respects. First, we not only consider in-sample fit, but also report on the
results of an extensive simulation experiment concerning out-of-sample forecasting. This forecast-
ing exercise includes point and interval forecasts. Second, we do not consider the two mentioned
models separately, as we propose a joint model, which we call the FI-BREAK model.

The outline of the paper is as follows. In the next section, we discuss the representation of 
the various models and parameter estimation. In the third section, we outline the salient features of
our simulation design and report our results for out-of-sample forecasts. We also compare the effects
of misspecification on in-sample parameter estimates. In the fourth section, we examine if the 
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simulation results carry though to empirical data, where we focus on volatilities of stock returns. A
final section concludes.

THE FI-BREAK MODEL

We exploit the possibility that the occasional structural break model (or simply BREAK model) and
I(d ) model can be summarized into one single model. One motivation for this joint model is that
both individual models can capture a long memory component to some extent, and hence a joint
model would be able to capture all long memory components. To construct such a joint model for
a time series yt, one can think of

(1)

where qt follows an i.i.d. binominal distribution, that is

(2)

For simplicity, we assume et ~ i.i.d. (0, se
2) and ht ~ i.i.d. (0, sh

2). Equation (1) can be rewritten as
yt = t + ut, where (1 - L)d

t = mt and (1 - L)dut = et. The time series yt can be decomposed into a
long memory break component t and a long memory component ut.

Another related model is the STOPBREAK model of Engle and Smith (1999), that is

(3)

where the function qt is specified as

for some value s > 0, see Smith (2000) for further details. This model includes an endogenous smooth
transition function to indicate structural breaks, and it can be seen as a contender to the discrete
break model.

Note that the model in (1) generalizes the model put forward in van Dijk et al. (2002), which is

(4)

where the transition function G(·) is assumed to be the logistic function

1

11 1 2 1

-( ) =
= ( ) - ( )( ) + ( ) ( ) +- -

L y x

x L x G s c L x G s c

d
t t

t t t t t tf g f g e; , ; ,    

qt
t t s

t t s

=
+ +( )

+ + +( )
- +

- +

e e
g e e

. . .

. . .
1

2

1
2

y m

m m q
t t t

t t t t

= +
= +- - -

e
e1 1 1

m̃
m̃m̃

q
p

p
t =

-
ÏÌ
Ó
1

0

,

,

with probability 

with probability 1

1

1

-( ) = +
= +-

L y m

m m q

d
t t t

t t t t

e
h



Forecasting Time Series with Long Memory and Level Shifts 3

Copyright © 2005 John Wiley & Sons, Ltd. J. Forecast. 24, 1–16 (2005)

where g > 0, st is the transition variable and sst is the standard deviation of st. This fractionally inte-
grated smooth transition autoregressive model allows for only two different regimes corresponding
to G(·) = 0 and G(·) = 1.

Based on the discussion above, we decide to focus on the following representation of a FI-BREAK
model, that is

(5)

where a(L) = (1 - a1L - . . . - apLp). We assume that m0 is fixed and known. This term determines
the unconditional mean of the process.

This general model can be seen to nest several related models by imposing certain parameter
restrictions.

I. When d = 0 and g Æ •, the model becomes an AR(p) model. Indeed, as g Æ •, qt = 0 for all
t, which implies that mt = m0 for all t. Furthermore, if additionally d = 0, one has a(L)yt = m0 +
et.

II. When 0 < d < 1 and g Æ •, the model becomes an ARFI( p, d ) model, that is, a(L)(1 - L)dyt =
m0 + et.

III. When d = 0 and 0 < g < •, the model is the familiar STOPBREAK model. If g < •, this process
contains an endogenous smooth break.

IV. When 0 < d < 1 and 0 < g < •, the FI-BREAK model combines an I(d ) model and a break
model.

We summarize the various results in Table I. In this paper, we consider only AR type dynamics, for
estimation convenience. Note that there are also other parameter combinations, such as g = 0 and
d = 1, but we choose to consider only the above models I, II, III and IV. Indeed, if we know the
degree of integration of a series (1 or 2), we could take proper differences and return to one of the
models above.

We can rewrite the FI-BREAK model (5) as
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Table I. Parameter space and models

d = 0 0 < d < 1 d = 1

g Æ 0 ARI(p, 1) ARFI(p, 1 + d) ARI(p, 2)
0 < g < • STOPBREAK FI-BREAK Integrated BREAK
g Æ • AR(p) ARFI(p, d) ARI(p, 1)
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where qt-1 = 1 - qt-1 and . Using Theorem 1 in Engle and

Smith (1999), we can show that this nonlinear moving average process is invertible with probabil-
ity 1 if prob(qt > 0) > 0 and if

with probability 1. Hence, we can estimate the model parameters using the AML method of Beran
(1995), see also van Dijk et al. (2002). Along similar lines, the approximate time-domain maximum
likelihood (AML) estimator for the FI-BREAK model is consistent and asymptotically normal.
Unreported simulation results support this.

SIMULATION

In this section we rely on extensive Monte Carlo simulations to examine the relative performance
of the FI-BREAK model. We consider in-sample fit and out-of-sample forecasting.

Design
We simulate nine different types of time series. In all cases the simulated noise, et and ht, is gener-
ated from the standard Gaussian distribution with variances se

2 = 1 and sh
2.

I. Fractionally integrated process

DGP(1): d = 0.1. This is persistent fractional noise with all autocorrelation coefficients positive. The
autocorrelation decays at a slow hyperbolic rate but the long memory properties are not very
prominent.

DGP(2): d = 0.4. Now the series has prominent long memory properties.
DGP(3): d = 0.7. This implies non-stationarity (d > 0.5), but the limiting value of the impulse

response function is equal to 0, such that shocks do not have permanent effects.

II. Break process

where qt follows an i.i.d. binominal distribution, that is, qt = 1 with probability p, qt = 0 otherwise.

DGP(4): p = 0.01, sh
2 = 0.1. The expected number of breaks in 300 observations is 3.

DGP(5): p = 0.01, sh
2 = 0.5. The expected number of breaks in 300 observations is 3 with larger size

of the breaks than DGP(4).
DGP(6): p = 0.03, sh

2 = 0.5. The expected number of breaks in 300 observations is 9.
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III. Mixture of fractional integration and break process

where qt follows an i.i.d. binominal distribution, that is, qt = 1 with probability p = 0.01 and qt = 0
otherwise.

DGP(7): sh
2 = 0.5, d = 0.1. A time series with a weak long memory component but with clear (visual)

breaks.
DGP(8): sh

2 = 0.5, d = 0.4. Time series with clear breaks and evident long memory.
DGP(9): sh

2 = 0.1, d = 0.4. Data with evident long memory but with weak evidence of breaks.

For each model, we generate 1000 time series, each having length T = 324, and we estimate model
parameters for the sample size T = 300, which would be equivalent to 25 years for monthly data. 
In each case, we use 24 additional data points for assessing out-of-sample forecasting perfor-
mance. This allows us to see how modelling the long memory characteristic might aid long-term
forecasting.

We use the following estimation procedures for the AR, ARFI model, BREAK model and 
FI-BREAK model:

(1) The AR model by the least squares method, that is

where a(L) = 1 - a1L - . . . - apLp.
(2) The ARFI model by the AML method, that is, Beran’s (1995) approximate time-domain

maximum likelihood procedure. The model reads as

and prior to estimating d the sample mean is subtracted first.
(3) The break model using Bai and Perron’s  (1998) method, that is, sequential estimation of the

break points. The model is given by

where mt = mr for r Œ (kr-1, kr]; r = 1, . . . , R + 1, such that 0 = k0 < k1 < . . . < kR < kR+1 = T. The
number of breaks R is treated as an unknown variable. We identify R break points with dynamic
components in a parametric model, by introducing lagged dependent variables so as to have an
autoregressive model. We use this model instead of the STOPBREAK model, as this break model
signals breaks better in empirical analysis of possibly long memory data.

(4) Finally, our FI-BREAK model, for which we also use the AML method. We set s = 12 in (5),
allowing that the permanent breaks do not all occur in one period, but that it may take time for
a permanent shock to filter through, for example, one year for macro data.
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For each series, final models are selected using AIC or BIC. It might be that higher-order AR
models do a reasonable job of capturing the long memory property. Crato and Ray (1996) find that
AIC generally selects lower-order AR models (p £ 4) for an ARFIMA process, even when the amount
of persistence is strong and p is allowed to range up to 20.

For out-of-sample forecasting from the ARFI model, we consider the ‘naïve’ method, see 
Crato and Ray (1996). A similar technique is used for the FI-BREAK model. We assume that the
current level will not change in the future, and then we construct forecasts by using the ‘naïve’
method to solve out the fractional integration part. To compare the forecasting performance of the
selected models, we compute the MSFE statistic of one-step and multi-step ahead forecasts. For the
latter, we take aboard all forecast error up to and including the horizon h. We also examine the sta-
tistical performance of the interval forecasts. Christoffersen (1998) suggests that a ‘good’ interval
forecast should have correct conditional coverage. As the scheme of our simulation study ensures
independence between forecast errors, we only check the correct unconditional coverage in the 
simulations.

Results
Table II presents the most salient estimation results for the simulated series. The entries are values
averaged over 1000 replications with sample size 300, as we save 24 observations for out-of-sample
experiments. The first and second numbers of each entry are results for the models selected by AIC
and BIC, respectively. The values in parentheses are the standard deviations for the simulated data.
The numbers of R in the FI-BREAK model are calculated by Sqt.

When the DGP is fractionally integrated without breaks as DGP(1), DGP(2) and DGP(3), spuri-
ous breaks appear to get detected by Bai and Perron’s (1998) method. Simulation results show a
positive relation between the average number of estimated breaks and the value of d in DGPs.

The reverse phenomenon can be observed as well. We can observe a clear upward bias for DGP(4),
DGP(5) and DGP(6) in the estimation of d of the ARFI model, which is of course due to neglected
level shifts. Note that the FI-BREAK model appears to be quite successful in filtering out the break
components when estimating d. When there are breaks as for DGP(4), DGP(5) and DGP(6), the esti-
mated values of d are very close to zero, although the estimated values of d in the ARFI model
deviate from zero significantly.

When the time series contain a break and long memory components like for DGP(7) and DGP(9),
the FI-BREAK model is successful for the estimation of d. For DGP(8), that is the DGP with strong
long memory but with a weak break component, the estimation of d in the FI-BREAK model is poor,
but still much better than in the ARFI model. However, our unreported simulation results for larger
samples indicate that the estimation method yields more reliable estimates of d for the FI-BREAK
model.

Finally, at least for these DGPs, we find that BIC leads to models that perform considerably better
than when the AIC is used. This confirms the results reported in Crato and Ray (1996).

Tables III to V summarize the root mean squared forecast errors (RMSFE) for various horizons.
In Table III we present the forecasting performance of three models relative to the ARFI model. The
best model for these I(d ) data is again the ARFI model, as we observe for all models that the ratios
(except for one) are higher than 0. However, the FI-BREAK model seems to lead to the smallest
differences in forecast errors.

The results in Table IV suggest that the FI-BREAK model works better than the BREAK model,
even though data were generated by a break process. Clearly, AR and ARFI models suffer from bias
and consequently produce poor forecasts. In the presence of structural breaks, the BREAK model
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can give better forecasts than linear models as it can adjust its forecasts immediately when the struc-
tural changes are detected. As the size of breaks gets larger, the worst predictions are made by the
ARFI model and the AR model as these models cannot adjust to such breaks.

In Table V, we examine the case where the data are generated to have both fractional integration
and break components. When d is close to zero with breaks like DGP(7), the BREAK model is
almost as good as the FI-BREAK model. Otherwise, except for this case, none of the models can
produce better forecasts than the FI-BREAK model itself. In sum, these simulation results suggest
that it is worthwhile to consider the FI-BREAK model for forecasting, also if the data have only
breaks or only long memory.

Finally, Table VI gives the results of the interval evaluation exercise. We only test for the ade-
quacy of unconditional coverage, as our simulation entails independence between forecast errors by
construction. From independently generated series, we calculate only one set of 1- to 24-step fore-
casts. The coverage rates for the ARFI model are approximately correct, although sometimes too
narrow when the DGPs contain breaks. The coverage rates for the BREAK model are too narrow

Table III. Root mean squared forecast errors relative to an ARFI model
(as a percentage)

DGP h-Step Model

BREAK FI-BREAK AR

DGP(1) AIC 1 2.4 -0.3 0.6
d = 0.1 6 14.9 1.2 1.4

12 29.1 2.2 0.9
24 49.9 5.1 1.0

BIC 1 3.2 0.0 1.7
6 14.1 1.3 1.8

12 26.8 2.7 2.2
24 45.1 4.1 2.6

DGP(2) AIC 1 8.5 0.3 2.0
d = 0.4 6 23.2 2.4 6.9

12 32.7 4.3 9.7
24 45.0 6.8 14.1

BIC 1 7.6 0.2 3.6
6 23.5 2.7 13.7

12 35.0 5.1 21.6
24 44.7 7.8 27.3

DGP(3) AIC 1 8.1 0.9 2.1
d = 0.7 6 18.7 4.5 7.9

12 27.2 7.5 12.2
24 33.9 10.8 20.2

BIC 1 4.3 0.9 2.9
6 16.5 3.1 10.9

12 26.8 5.3 21.2
24 33.6 8.4 36.7

Note: The entries are values averaged over 1000 replications. The entries are 
calculated by {(RMSFE of a model)/(RMSFE of ARFI) - 1} ¥ 100.
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for multi-step forecasts. The FI-BREAK model shows the smallest amount of cases where the uncon-
ditional coverage probabilities lie outside the acceptance region.

To summarize, if one believes that a time series might have long memory or perhaps have struc-
tural breaks, one can start with fitting the joint FI-BREAK model. Our simulation results show that
the parameter estimates in this model can suggest whether submodels are more appropriate. In terms
of forecasting, we find that the joint model leads to good forecasts, even when the DGP is one of
the submodels.

AN EMPIRICAL ILLUSTRATION

In this section, we compare the estimation and forecast performance of AR, ARFI, BREAK and 
FI-BREAK models for volatilities (log of squared returns) of the S&P 500 series from January 4,
1928 to August 30, 1991, amounting to 17,054 daily observations. We split the total sample into 

Table IV. Root mean squared forecast errors relative to a BREAK model
(as a percentage)

DGP h-Step Model

ARFI FI-BREAK AR

DGP(4) AIC 1 -0.1 -2.0 1.5
R = 3 6 0.5 -6.7 7.2

12 4.2 -9.6 15.3
24 8.1 -12.9 22.9

BIC 1 0.1 -2.2 2.3
6 5.6 -4.5 20.1

12 14.8 -5.5 39.7
24 21.0 -8.8 51.5

DGP(5) AIC 1 0.8 -1.9 3.7
R = 3 6 15.3 -0.7 26.2

12 33.2 3.1 54.6
24 48.9 5.7 80.4

BIC 1 3.8 -0.2 12.0
6 24.5 0.1 64.6

12 49.7 3.7 119.0
24 71.4 5.2 155.1

DGP(6) AIC 1 -2.0 -4.1 0.4
R = 9 6 2.3 -7.6 5.9

12 13.2 -7.1 15.6
24 24.2 -2.6 30.5

BIC 1 -1.4 -4.8 3.1
6 10.5 -7.3 36.2

12 25.7 -9.0 65.8
24 38.8 -6.5 88.7

Note: The entries are values averaged over 1000 replications. The entries are 
calculated by {(RMSFE of a model)/(RMSFE of BREAK) - 1} ¥ 100.
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Table V. Root mean squared forecast errors relative to a FI-BREAK model
(as a percentage)

DGP h-Step Model

ARFI BREAK AR

DGP(7) AIC 1 6.8 2.9 9.7
d = 0.1, R = 3 6 15.3 5.9 22.9

12 21.5 5.1 30.1
24 34.4 1.2 46.2

BIC 1 9.0 3.5 17.1
6 20.9 3.9 53.4

12 31.4 3.7 79.4
24 48.6 -0.5 112.0

DGP(8) AIC 1 2.4 15.5 4.4
d = 0.4, R = 3 6 11.3 33.5 11.9

12 19.3 37.0 14.1
24 34.1 41.9 19.5

BIC 1 1.7 5.2 3.7
6 11.2 22.1 17.7

12 21.2 31.3 26.6
24 37.6 41.9 38.6

DGP(9) AIC 1 2.0 9.2 5.1
d = 0.4, R = 3 6 7.8 27.2 13.1

12 15.7 29.2 19.3
24 33.3 30.8 30.9

BIC 1 3.5 6.9 7.9
6 11.2 26.3 29.6

12 20.4 31.7 51.7
24 38.6 38.5 86.0

Note: The entries are values averaged over 1000 replications. The entries are 
calculated by {(RMSFE of a model)/(RMSFE of FI-BREAK) - 1} ¥ 100.

Table VI. Coverage rates of interval forecasts

DGP Coverage h-Step Model

AR ARFI BREAK FI-BREAK

DGP(1) 75% 1 0.764 0.770 0.756 0.768
6 0.749 0.758 0.743 0.754

12 0.750 0.750 0.724 0.747
24 0.738 0.740 0.727 0.734

95% 1 0.932* 0.941 0.927* 0.938
6 0.947 0.942 0.938 0.944

12 0.951 0.952 0.946 0.952
24 0.942 0.940 0.933* 0.937

DGP(2) 75% 1 0.761 0.767 0.738 0.765
6 0.736 0.750 0.686* 0.734

12 0.738 0.740 0.681* 0.725
24 0.724 0.744 0.660* 0.739
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Table VI. continued

DGP Coverage h-Step Model

AR ARFI BREAK FI-BREAK

95% 1 0.937 0.940 0.926* 0.940
6 0.939 0.938 0.906* 0.931*

12 0.941 0.949 0.908* 0.948
24 0.932 0.944 0.899* 0.942

DGP(3) 75% 1 0.750 0.764 0.738 0.768
6 0.736 0.747 0.645* 0.725

12 0.723 0.741 0.620* 0.715*
24 0.668* 0.724 0.554* 0.696*

95% 1 0.937 0.936 0.921* 0.938
6 0.931* 0.933* 0.877* 0.923*

12 0.925* 0.941 0.857* 0.931*
24 0.883* 0.935* 0.798* 0.918*

DGP(4) 75% 1 0.743 0.745 0.743 0.753
6 0.760 0.768 0.754 0.769

12 0.718* 0.724 0.717* 0.717*
24 0.744 0.744 0.751 0.755

95% 1 0.950 0.951 0.947 0.950
6 0.953 0.957 0.955 0.958

12 0.961 0.966* 0.962 0.961
24 0.940 0.943 0.939 0.945

DGP(5) 75% 1 0.730 0.745 0.731 0.744
6 0.745 0.766 0.755 0.769

12 0.712* 0.711* 0.711* 0.720*
24 0.719* 0.728 0.731 0.747

95% 1 0.941 0.941 0.943 0.947
6 0.951 0.951 0.944 0.955

12 0.949 0.955 0.945 0.951
24 0.922* 0.936 0.928* 0.930*

DGP(6) 75% 1 0.729 0.741 0.726 0.750
6 0.752 0.766 0.729 0.753

12 0.719* 0.726 0.684* 0.720*
24 0.704* 0.704* 0.659* 0.700*

95% 1 0.941 0.948 0.934* 0.948
6 0.940 0.944 0.927* 0.944

12 0.927* 0.938 0.920* 0.939
24 0.920* 0.924* 0.892* 0.910*

DGP(7) 75% 1 0.734 0.745 0.718* 0.754
6 0.720* 0.739 0.700* 0.732

12 0.700* 0.727 0.666* 0.703*
24 0.662* 0.693* 0.682* 0.715*

95% 1 0.934* 0.940 0.935* 0.944
6 0.929* 0.941 0.929* 0.940

12 0.930* 0.930* 0.904* 0.925*
24 0.902* 0.917* 0.916* 0.921*
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Table VI. continued

DGP Coverage h-Step Model

AR ARFI BREAK FI-BREAK

DGP(8) 75% 1 0.748 0.772 0.742 0.760
6 0.756 0.774 0.701* 0.762

12 0.746 0.755 0.684* 0.743
24 0.710* 0.704* 0.585* 0.710*

95% 1 0.947 0.949 0.934* 0.941
6 0.940 0.944 0.891* 0.942

12 0.949 0.952 0.871* 0.913*
24 0.911* 0.927* 0.787* 0.883*

DGP(9) 75% 1 0.741 0.767 0.724 0.761
6 0.755 0.778* 0.657* 0.758

12 0.734 0.751 0.617* 0.713*
24 0.680* 0.720* 0.550* 0.709*

95% 1 0.949 0.951 0.935* 0.948
6 0.940 0.936 0.888* 0.935*

12 0.943 0.952 0.847* 0.928*
24 0.908* 0.932* 0.808* 0.906*

Note: The entries are the empirical coverage probabilities of the 75% and 95% 
theoretical forecast intervals. We use 1000 independent forecasts for calculating 
the coverage probabilities. Asterisks indicate cases where the unconditional cover-
age probabilities lie outside the 95% acceptance region.

Table VII. In-sample comparison of various models

Period ARFI BREAK FI-BREAK

d Log-likelihood R Log-likelihood d R Log-likelihood

1 1928–34 0.278 -2094.8 3 -2084.6 0.115 14.0 -2102.4
2 1934–40 0.169 -2050.3 2 -2038.8 0.001 11.3 -2055.9
3 1941–47 0.123 -2056.4 4 -2026.3 0.060 17.8 -2054.2
4 1947–53 0.089 -2102.6 3 -2083.6 0.057 6.4 -2102.0
5 1954–60 0.069 -2024.6 2 -2014.3 0.051 3.2 -2025.1
6 1960–66 0.061 -2135.8 1 -2132.0 0.061 0.0 -2135.8
7 1967–73 0.159 -2149.4 3 -2132.4 0.140 1.6 -2147.9
8 1973–79 0.334 -2147.6 2 -2143.4 0.067 3.9 -2159.1
9 1980–86 0.059 -2200.1 2 -2187.8 0.000 11.4 -2196.0

10 1986–91 0.133 -2240.8 4 -2213.1 0.000 5.8 -2241.0

Note: The estimation results are based on the first 1000 observations of each subsample. The values of R in FI-BREAK
model are calculated by Sqt. The data are the logs of squared returns of S&P 500 series from January 4, 1928 to August 30,
1991 with 17,054 daily observations. We split the total sample into 10 subperiods.
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10 subperiods. We remove all zero returns which are due to holidays, and this leads to different
sample sizes for each subsample.

For the in-sample period, we estimate the parameters with AR lags selected by BIC. We fix the
AR order p of the FI-BREAK model to be the same as that of the BREAK model.

Table VII reports on parameter estimates, that is, the d in the ARFI and FI-BREAK models, and
the R in the BREAK and FI-BREAK models. We estimate parameters using the first 1000 observa-
tions of each subsample. The values of R in the FI-BREAK model are calculated by Sqt. The numbers
of breaks in the BREAK model appear to vary from 1 to 4. The values of d in the ARFI model range
from 0.059 in the period 1986–1991 up to a value of 0.334 in the period 1973–1979. However, the
values of d in the FI-BREAK model range from 0.000 to 0.140. Hence, by including a break com-
ponent, the long memory parameter decreases rapidly.

The root mean squared forecast errors are recorded in Table VIII. Forecast horizons include 20,
60, 120 and 240 trading days, which approximately match with 1 month, 1 quarter, 6 months and 1
year. The Diebold and Mariano (1995) statistic has p-values which show strong evidence that the 
FI-BREAK model is superior to the BREAK model, but we obtain mixed results when we compare
the ARFI and FI-BREAK models. Table IX reports on the empirical conditional coverage probabil-
ities of the three models, as well as of the linear AR model. The conditional coverage is approxi-
mately correct for the short (1-, 5-, 10-, 20-step) horizons for all models. The coverage rates for the
FI-BREAK model are more often correct for faraway horizons.

CONCLUSION

In this paper we introduced a model that can jointly capture structural breaks and long memory. We
examined our FI-BREAK model to see if S&P 500 volatility has long memory, level shifts or both.
We found that level shifts are dominant, but that long memory did not always disappear. We used a
range of forecast evaluation techniques to investigate the relative performance of the FI-BREAK
model to a BREAK model or an I(d ) model, and found that the new joint model would be prefer-
able for these data.

The simulation results in this paper indicated that the long memory parameter in the FI-BREAK
model can be consistently estimated, also in the case that there is an unknown break component.
Also, our simulations indicated that the forecast performance of the FI-BREAK model is better than
for the closest competitive models.
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