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ABSTRACT
This paper addresses several questions surrounding volatility forecasting and
its use in the estimation of optimal hedging ratios. Specifically: Are there 
economic gains by nesting time-series econometric models (GARCH) and
dynamic programming models (therefore forecasting volatility several periods
out) in the estimation of hedging ratios whilst accounting for volatility in the
futures bid–ask spread? Are the forecasted hedging ratios (and wealth gener-
ated) from the nested bid–ask model statistically and economically different
than standard approaches? Are there times when a trader following a basic
model that does not forecast outperforms a trader using the nested bid–ask
model? On all counts the results are encouraging—a trader that accounts for
the bid–ask spread and forecasts volatility several periods in the nested model
will incur lower transactions costs and gain significantly when the market 
suddenly and abruptly turns. Copyright © 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Volatility forecasting permeates the world of economics and finance. Indeed, a voluminous litera-
ture has emerged in the area of risk management literature simply because volatility, usually meas-
ured as the standard deviation of portfolio returns, is often taken to represent portfolio risk. However,
much of the literature on volatility forecasting tends to be univariate in nature. In a hedging appli-
cation this makes little sense since forecasting hedging ratios (which are mainly functions of 
variances and covariances of asset returns) requires multivariate forecasting. Therefore, since Engle
(1982) and Bollerslev (1986) first introduced ARCH/GARCH models, time-series econometrics have
been applied to model conditional variance and covariance dynamics for both cash and futures prices
jointly—used in the forecasting of optimal hedging ratios. Significant gains have been reported from
a risk management standpoint relative to more traditional, basic econometric techniques.

The underlying concept in the hedging literature is the notion that traders may optimally select
combinations of cash and futures positions to minimize risk. However, as highlighted by Campbell
et al. (1997), rather than there simply being one futures price for an asset there are in fact three rel-
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evant to a trader: bid price, an asking price and the transaction price. Given that neither the bid nor
the ask are usually reported by most open outcry markets, only a limited number of research papers
have evaluated the importance of the bid–ask spread in trading activities, simply because bid–ask
data is not usually available. Results from studies that have employed available bid–ask data have
suggested that ignoring the spread can be costly. For instance, Bae et al. (1998) show that failing to
consider bid–ask spreads would lead to false conclusions regarding the profitability of stock index
futures arbitrage.

It is therefore the principle objective of this paper to introduce the role of the bid–ask spread on
optimal hedging models that require multi-step time-varying volatility forecasts, by uniting the
GARCH time-series hedging approach (which tends to rely on one-period-ahead forecasts) with
another competing, yet very different approach which tends to rely on multi-step-ahead forecasts of
volatility—dynamic programming (DP). An assessment is also made as to whether the hedging ratios,
calculated from competing (traditional) models, are in fact statistically and economically different
from this nested DP–GARCH model. Indeed, as pointed out by Granger (2001) and Granger and
Pesaran (2000), having statistical measures may not be enough and so a quantifiable measure of eco-
nomic significance should be required and a closer link between economic decision theory and fore-
casts should be made.

The remainder of this paper is as follows. First a brief overview of optimal hedging is presented,
followed by the introduction of the nested DP–GARCH that ignores the role of the bid–ask spread
(model I). Next the role of the bid–ask spread and the role of forecasting in the nested DP–GARCH
approach is discussed and a modified DP–GARCH model (model II) is presented. The data used 
in the empirical analysis is discussed and the econometric estimation results are then presented, 
followed by a presentation of hedging results, complete with a description on the development of
time-varying confidence bands around the optimal hedging ratios. Finally, the results and their impli-
cations are summarized in the conclusion.

HEDGE RATIO ESTIMATION

A popular method of determining an optimal hedging strategy is to employ what is commonly known
as the minimum variance (MV) framework, where it is assumed that a trader minimizes the vari-
ability of wealth associated with an expected purchase (or sale). The MV methodology has been uti-
lized in many studies because the components of the MV hedge ratio may be retrieved from variance
and covariance forecasts of the underlying cash and futures prices. These combinations of cash and
futures positions (typically expressed as proportions to one another) are referred to as hedge ratios.
To understand the MV hedge ratio framework, consider a simple one-period wealth function

(1)

where Wt is comprised of both the return on purchasing the asset at time t - 1 and selling it at time
t and the returns from hedging the cost. Here Ct denotes the future cash price associated with com-
modity sale, is the known cash price associated with the initial purchase, is the known
(short) futures price locked in at time t - 1, and Ft is the (long) futures price obtained to offset the
original futures transaction at time t. bt-1 represents the OHR to be determined. The concept of the
MV hedge method is to minimize the variance of the wealth function. For the simple case illustrated
in (1), the variance of wealth, Vart-1, may be written as

Ft-1Ct-1

W C C b F Ft t t t t t= -( ) + -( )- - -1 1 1
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(2)

After taking the first-order condition for an extremum associated with the OHR and solving, we
obtain

(3)

which is comprised of the one-step-ahead forecasts of the variance and covariance estimates for
underlying cash and futures prices.1

Traditionally the calculation of OHRs rested on the erroneous assumption that the covariance
matrix, and hence the OHR, was constant through time. Consequently a large body of recent research
has focused on utilizing the GARCH framework to compute time-varying (conditional) hedge port-
folios. To estimate time-varying hedge ratios it is necessary to model jointly the first two moments
of the cash and futures settlement prices. Focusing on the constant correlation model (one of the
more basic approaches to modelling the second moments of asset prices), we model the prices as
follows:

(4)

where DPt = (Ct, Ft)T is a (2 ¥ 1) vector containing cash and futures prices (T is a transpose opera-
tor); m is a (2 ¥ 1) mean vector of cash and futures prices (the intercept or drift terms), respectively;
et is a (2 ¥ 1) vector of mean zero, bivariate normally distributed cash and futures price innovations;
Wt-1 is the information set available at time t - 1; and Ht, where vech(Ht) = (h11,t, h12,t, h22,t)T, is a 
(2 ¥ 2) conditional covariance matrix. The constant correlation parameterization implies that the 
Ht matrix may be specified according to

(5)

where rijt denotes the ijth constant conditional correlation. In general rijt can be time-varying (hence
the t subscript), but consideration simplifications arise in estimation and inference if it is assumed
that rij is constant for all t. Returning to the OHR problem, it follows that, given the (time-varying)
nature of the variance–covariance matrix Ht, the time-varying OHR may be expressed as

(6)

where bt-1 is the OHR conditional on all available information at time t - 1, represented by Wt-1.
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1 Several studies have used the rule in (3) to calculate the hedge ratio using OLS regression techniques because the slope
coefficient equals the term shown in (3).
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COMBINING DP HEDGING MODELS WITH GARCH TIME-SERIES TECHNIQUES

Assume that a trader starts with an initial amount of wealth, which is invested in the commodity for
resale at a later date. Also the hedging decision for each purchase is made several periods prior to
the terminal date and the hedged portfolio can then be updated (modified) at each period up to that
time using GARCH time-series techniques. For simplicity, consider a three-period problem, t - 2, 
t - 1, t which is the delivery date. Three periods before the sale of the commodity, after the cash
position has been established, the trader decides on the initial futures position that covers the trading
period between period three and period two, b(S)t-2 (where (S ) indicates the use of just the futures
settlement prices). The futures position then evolves in the sense that the quantity hedged in the next
period, b(S)t-1, may be different from the quantity hedged in t - 2. The following period, t, the trader
closes out all outstanding futures positions, sells the cash commodity and collects the proceeds.
Hence, from the perspective of the current period, t - 2, we can define wealth at the terminal date
t, Wt, as

(7)

Variable is the initial (known) price at which the exogenously determined cash commodity is
purchased; Ct is the stochastic cash price at which the commodity must be sold at the end of the
three periods. is the (known) futures price available at the initial time period that the decision
is made; Ft-1 and Ft are the stochastic futures prices in the respective periods; r is the one-period
risk-free interest rate; b(S)t-2 and b(S)t-1 are the hedging ratios that capture the quantity of futures sold
(bought if negative). The terminal monetary wealth Wt reflects the fact that the trader’s futures
account is marked to market, meaning that all profits and losses related to the futures positions are
realized each period.

To remain consistent with the OHR literature, at each decision date the trader first decides the
quantity to be hedged in order to minimize the variance of terminal wealth, given the cash position.
The trader’s objective at the initial time period, t - 2, is to calculate the hedge ratio, b(S)t-2, that 
minimizes the variability of terminal wealth. Therefore, to find the hedge ratio that would be used
at time t - 2, b(S)t-2, the trader must forecast the hedge ratio that would be employed the following
week, t - 1. Following Mathews and Holthausen (1991), and hence working backwards, the trader
estimates the hedge ratio that would be used the week prior to the cash sale, b(S)t-1, in order to mini-
mize the variability of wealth. The conditional variance of the wealth (and suppressing condition-
ing information notation for ease of reading) associated with that week is therefore

(8)

After obtaining the first-order condition for an extremum, and then solving for the optimal hedging
ratio, we are left with precisely the same hedge ratio presented in equation (6). Therefore, the hedge
ratio is simply comprised of the one-step-ahead forecast of the cash and futures settlement price
covariance divided by the one-step-ahead forecast of the futures settlement price variance. Substi-
tuting the expression for b(S)t-1 into the wealth expression (8), we can find the variance of wealth at
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the initial trade date.2 Therefore, in the initial period (two periods prior to the eventual cash sale)
the trader minimizes the variability of terminal wealth relevant at that date:

(9)

The variance at time period t - 2 is a function of several variances and covariances; the hedge ratio
that is used at time t - 2, b(S)t-2 (the operational hedge ratio) and the expected hedge ratio to be used
the next time period, b(S)t-1 (the forecasted ratio). Taking the first-order condition of equation (9) and
solving for the optimal first-period futures position (the OHR) gives

(10)

This hedge ratio might be viewed as the sum of an inter-subperiod hedge ratio plus the discounted
next period hedge ratio weighted by a small positive weight if Covt-2(Ft, Ft-1) < Vart-2(Ft-1). However,
if the futures market in question can be shown to have little or no systematic bias then all terms
remaining after the first term on the right-hand side of each OHR disappear. This is so because if a
futures market can be shown to be unbiased then the hedge ratio at each time period can be shown
to be independent of all other hedge ratios.3 This implies that if we have unbiased futures markets,
the OHRs developed within the DP framework differ because of the discount rate, and by the timing
of the forecasts of volatility, but are independent of any future hedge ratios.

BID–ASK SPREADS AND THE DP–GARCH MODEL

According to Campbell et al. (1997) there are three futures prices relevant to the trader, a bid price,
an asking price and the transaction price, not just the settlement price often used in empirical
research. Therefore, even though the bid and ask price represent prices related to the same com-
modity, they may not be perfectly correlated and should not be treated as such.4 It is assumed, as in

b
F C

r F

b

r

F F

F
S t

t t t

t t

S t t t t

t t
( ) -

- -

- -

( ) - - -

- -
=

( )
+( ) ( )

+
+( )

-
( )
( )

È
ÎÍ

˘
˚̇2

2 1

2 1

1 2 1

1 11 1
1

Cov

Var

Cov

Var

, ,

Var Var

Var Var

t t t t t S t t t S t t

S t t t S t t t S

W r C r F F b F F b C

r b F b F b

- - - - - ( ) - - ( ) -

( ) - - - ( ) - - - (

( ) = +( ) -( ) + +( ) -( ) + -( ) +

= +( ) ( ) + ( ) +

2 2 2 2 2 1 2 1 1

2

2
2

2 1 1
2

2 1

1 1

1 )) - - -

( ) - ( ) - - - ( ) - ( ) - - -

( ) - - -

( ) + ( )

- +( ) ( ) + +( ) ( )
- +( ) ( ) -

t t t t t

S t S t t t S t S t t t t

S t t t t

F F

r b b F r b b F F

r b F C

1
2

2 2

2 1 2 1 2 1 2 1

2 2 1

2 1 2 1

2 1 2

Var Var

Var Cov

Cor

,

, bb F F b F C

b F C

S t t t t S t t t t

S t t t t

( ) - - - ( ) - - -

( ) - -

( ) + ( )

- ( )
1

2
2 1 1 2 1

1 2

2

2

Cov Cov

Cov

, ,

,

2 To simplify the model, we follow Mathews and Holthausen (1991) by assuming that the hedger knows b(S)t-1 at the initial
trade date. This is not a restrictive assumption, as estimates of the variances/covariances were based on historical relation-
ships and are easy to forecast using GARCH models.
3 For example, representing the futures price at time period t as Ft = Ft-1 + ut with a variance expressed as Vart(Ft) = Et(ut)2.
The futures price at period t - 1 can then be expressed as Ft-1 = Ft-2 + ut-1, and because Ft = Ft-2 + ut-1 + ut-2 we have 
Covt-2(Ft-1, Ft) = Et-2(ut-1, ut-1 + ut)2 = Et-2(ut-1)2. Therefore, Vart-2(Ft-1) = Covt-2(Ft-1, Ft-2), and so the hedge ratio collapses  

to
.

4 Recent research by Gagnon et al. (1998) employed a trivariate GARCH system allowing for time-varying covariability
between related prices (that were not perfectly correlated) in a portfolio. They discovered that significant gains in hedging
performance may be enjoyed by modelling (forecasting) the prices (variances) jointly in a portfolio compared to individual
strategies. Moreover, further gains may be achieved simply because significantly fewer futures contracts would be recom-
mended in the portfolio approach, thus reducing commission charges on the futures contracts.
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model I, that in period t - 2 the trader decides on the initial futures position, b(BA)t-1 (where (BA)
indicates that the hedging ratios have been developed using the bid and ask prices). However, now
instead of going short at the settlement price recorded by the exchange, the trader must go short at
the bid price which can in some instances be much lower than the settlement price, particularly in
thinly to moderately traded markets (see data section). The futures position then evolves (like the
case presented for model I) in the sense that the quantity hedged in period t - 1, b(BA)t-1, may be dif-
ferent from the quantity hedged in t - 2. The next period, t, the trader closes out all outstanding
futures positions, by offsetting the futures position by going long at the asking price rather than the
settlement price (model I). The trader would then sell the cash commodity, and collect the proceeds
(if any) from the hedge. Hence, from the perspective of the current period, t - 2, we can define
wealth at the terminal date t, Wt, as

(11)

All variables are as previously defined except , which is the futures bid price available at the
initial time period that the decision is made. Bt-1 and At are the stochastic futures bid and ask prices
in the respective periods; and b(BA)t-2 and b(BA)t-1 are the hedging ratios that capture the quantity of
futures sold (bought if negative). The solution is once again obtained through backward induction,
so in order to find the hedge ratio that would be used at time t - 2, b(BA)t-2, the trader must forecast
the hedge ratio that would be employed the following week. The conditional variance of the wealth
associated with that period is

(12)

After obtaining the first-order condition for an extremum, and then solving for the OHR, we are left
with , which is composed of the one-step-ahead forecast of the cash
and futures asking price covariance divided by the forecasted variance of the futures asking price.

Substituting the expression for b(BA)t-1 into the wealth expression (12), we can find the variance of
wealth at the initial trade date. Taking that first-order condition and solving for the optimal first-
period futures position leaves us with

(13)

In this case, the second term on the right-hand side of equation (13) may not disappear simply
because the bid prices and ask prices exhibit different behaviour in the short run, particularly in
thinly to moderately traded markets (see data section). So only if Covt-2(Bt-1, At-2) = Vart-2(At-1) are
we left with a weighted initial hedge ratio, the first term on the right-hand side (which relies on a
two-step-ahead forecast of the volatilities) where the next period hedge ratio, b(BA)t-1, does not affect
the current period hedge ratio b(BA)t-2. As this may not be the case every time period, we have reason
to believe that the next period hedge ratio will affect the current period hedge ratio.

To implement the DP–GARCH framework, regardless of whether we focus on model I or model
II, a specification must be chosen for the time-varying covariance matrices. Based upon residual
diagnostic tests (see econometric estimation results presented below), each series is specified as a
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simple martingale process, thereby satisfying the assumption of unbiased markets.5 Because the con-
stant correlation structure (presented in equation (5)) is parsimonious in parameters, and relatively
easy to estimate, it is employed here. Multi-step-ahead forecasts of relevant variances and covari-
ances are then required to generate the optimal hedging ratios from the underlying bivariate GARCH
model (model I) and trivariate GARCH model (model II) at each trade date. Therefore, the general
form of a forecast, at time t, of the volatility of the time-series variable over the period t to t + M is
represented as

(14)

For the GARCH (1, 1) model, this then becomes

(15)

Using the definition of s 2
t+1 = E[e2

t+1|Wt], this can be expressed equivalently as

(16)

Recursive substitution yields
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Collecting terms yields the following expression for the M-step-ahead conditional variance forecast:
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5 Time-series processes are based on residual diagnostic results (Ljung–Box Q and Q2 tests for white noise).
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Estimating the hedge ratios also involves choosing an appropriate discount rate. In the ensuing
analysis this discount rate is set throughout at 10%, and we continue with the three-period hedging
scenario as in the example.

DATA

Daily closing futures prices (bid, ask and settlement) for white sugar traded at LIFFE were collected
from Bloomberg International covering the period 13th December 1995–12th January 2000.6

While bid–ask quotes are collected and recorded throughout the day (and are made publicly avail-
able), the final bid, ask and settlement price of the day were collected based on the assumption 
that our representative trader makes updates and hedging decisions towards the close of trading 
once a week. Therefore weekly price data (214 observations) were constructed using Wednesday
prices. However, if closing bid–ask quotes based on Wednesday prices were not available, 
then a Thursday or a Friday price was used.7 The futures prices are for the nearby contract month
which forms the first value for the continuous series, and runs until the last day of trading of the
contract.

In addition to the closing bid, ask and settlement prices weekly London cash prices for sugar 
covering the same time period were collected from Datastream International. Figure 1 illustrates the
four price series (closing bid, ask, settlement and cash prices over the five-year horizon). As can be
seen from the main graph it is extremely difficult to distinguish between the related futures price
series as the average bid–ask spread as a percentage of the settlement price is very small. However,
as can be seen from the smaller graphical insert, the bid, ask and settlement are quite different, and
tend to move together over time, albeit by non-constant amounts. Such a phenomenon is not uncom-
mon in moderately traded markets like the sugar market at LIFFE.8 Figure 1 (lower panel) further
illustrates this point by simply presenting a time-series plot of the bid–ask spread over the time
horizon. As can be seen from the chart, the bid–ask spread varies by uniform amounts (the minimum
tick size) and can on some occasions be as high as $2 per tonne. The mean value of the spread over
the time period is $0.4557, while the modal value is $0.2 or twice the size of the minimum tick
value.

ECONOMETRIC ESTIMATION RESULTS

Each price series was first examined for the existence of a unit root using augmented Dickey–Fuller
(ADF) tests. Results indicated that all four series (futures bid, ask, settlement and cash) are I(1).
Correspondingly, each series was first differenced in the econometric estimation. Quasi-maximum
likelihood estimates of model parameters were obtained using the BFGS (Broyden, Fletcher, 
Goldfarb and Shanno) algorithm so the estimates are consistent even if the conditional distribution
of the residuals is non-normal (Bollerslev and Wooldridge, 1992). Residual diagnostics (Ljung–Box

6 Unlike other commodities, sugar has always been traded on the electronic trading system, so all closing bid/asks and trans-
action volumes are available. In November 2000 all commodities switched from open outcry to electronic trading.
7 A total of seven Thursday prices and five Friday prices were used.
8 Total volume for the year 2000 for the sugar contract was 907,399, which ranked third in terms of total volume behind
cocoa (1,636,322) and coffee (1,470,980).
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Figure 1. Weekly bid, settlement, ask and cash prices: December 1995–January 2000 (upper panel) and weekly
Wednesday closing bid–ask spread (lower panel)
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Q and Q2 test statistics) for each model suggest that the GARCH (1, 1) models appear to do a rea-
sonable job of explaining conditional mean and variance dynamics of all the prices.9

HEDGING RESULTS

The key question in any forecasting (hedging) evaluation study is how well does the proposed model
perform relative to other models? To answer this question, we first turn our attention to the
DP–GARCH model that forecasts volatility but only utilizes the cash and futures settlement prices
(model I) and we then turn our attention to the DP–GARCH model that incorporates the bid–ask
prices (model II) and forecasts volatilities several periods ahead. For both models an evaluation is
made of their performance relative to other more standard models including a straightforward
GARCH, OLS, naïve and unhedged models which do not employ any kind of recursive substitution.

Hedging results: model I
The left-hand panel of Table I presents sample average hedge ratios, along with standard errors
around the average and minimum and maximum hedge ratios, for each of the DP–GARCH b(S)t-2

and b(S)t-1) and GARCH (b(S)GARCH) models. Also included are the average values for the OLS, naïve

Table I. Descriptive statistics for hedge ratios for risk-minimizing static and dynamic objectives, three-week
hedging horizon

Hedge model Model I Model II

DP–GARCH b(S)t-2 b(S)t-1 bBA(t-2) b(BA)t-1

Avg. 0.761 0.763 0.748 0.749
SE 0.129 0.129 0.046 0.042
Min 0.489 0.490 0.552 0.567
Max 1.129 1.131 0.887 0.885

GARCH b(S)GARCH b(BA)GARCH

Avg. 0.761 0.748
SE 0.129 0.046
Min 0.489 0.552
Max 1.129 0.887
OLS b(S)OLS b(BA)OLS

0.710 0.710

Naïve b(S)NAIVE b(BA)NAIVE

1 1
Unhedged b(S)UNHEDGED b(BA)UNHEDGED

0 0

Note: The annualized discount rate, r, is 0.10. Avg. denotes sample average, SE is the corresponding standard error of the
average of the hedge ratios. Min is the sample minimum and Max is the sample maximum. The GARCH hedge ratio for
both model I (b(S)GARCH) and model II (b(BA)GARCH) represents the average hedge ratio that would be used by the trader over
the entire trading period. It is equal to the hedge ratio used at t - 2 by the DP–GARCH user as it is assumed that the simple
GARCH user uses weekly data to form the hedge ratio to be applied at t - 2 and left in place until the commodity is pur-
chased at the end of the trading horizon. The OLS, b(S)OLS and b(BA)OLS and naïve, b(S)NAIVE and b(BA)NAIVE hedge ratios used each
week are not, like the DP–GARCH and GARCH counterparts, updated each week.

9 All these econometric results are excluded to conserve space but are available from the author upon request.
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and unhedged hedging strategies. Plots of the DP–GARCH, OLS (b(S)OLS) and naïve (b(S)NAIVE) hedge
ratios for the sample period along with confidence bands are reported in the upper two panels of
Figure 2. Since analytical expressions for hedging ratio standard errors may be impossible to obtain,
an asymptotic approximation is applied here. In particular the delta method is employed, which
amounts to a Taylor series approximation (Kendall and Stuart, 1977) for deriving standard errors
around the hedge ratios. Specifically, for each of the hedging ratios: b(i=S or BA) can be expressed as
function bi(q) of a parameter vector q = (q1,q2, . . . , qP)¢. If the covariance matrix of is C and 
J is the gradient of bi(q), then approximately: bi(q) =. bi(q0) + (q - q0)¢J, where q0 = E(q), so 
Var(bi( )) =. J¢CJ. The resulting time-varying confidence bands can then be calculated and can be
seen surrounding the time-varying hedge ratios in Figure 2. To illustrate, in around week 200 the
DP–GARCH hedge ratios at time t - 1 and t - 2 are larger than the naïve hedging ratio (b(S)NAIVE),
but as the confidence band overlaps with the naïve ratio we could infer that they are statistically
indistinguishable from one another.

For the GARCH hedge ratio (b(S )GARCH) it is assumed that once the hedge is in place it is not updated
over the hedge horizon. Of course a weekly sampling frequency enables the trader relying on a
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Figure 2. Model I (DP–GARCH model using b(S) hedge ratios) with confidence bands at t - 1, t - 2 respec-
tively, and percentage improvement over the OLS model
Note: The b(S) hedge ratios refer to the optimal hedging ratios calculated using the futures settlement price data.
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myopic GARCH model to update the hedge ratio (but not use DP analysis); however, for compari-
son sake, this hedge is also left in place for the entire hedge period. Consequently, the average
GARCH hedge ratio, b(S)GARCH, is identical to the DP–GARCH hedge ratio developed at the start of
trading. The OLS and naïve hedging ratios, b(S)OLS and b(S)NAIVE, on the other hand, do not change
from week to week, as they are simply obtained from an OLS regression of the change in the futures
settlement price on the change in the cash price, or set equal to 1 respectively. The unhedged hedge
ratio is set equal to 0 for each and every week.

As illustrated in Table I and Figure 2 (panels A and B) for the DP–GARCH portfolio we see sub-
stantial variation in OHRs at each hedge horizon through time, but there is relatively little variation
among OHRs across hedge horizons. To illustrate, during the initial period, t - 2, the average hedge
ratio for the trader is 0.7613; conversely the hedging ratio in the next period is 0.7627, indicating
that on average the hedge ratio increases modestly. The fact that the hedge ratio increases over time
is consistent with the findings of Anderson and Danthine (1983). If no variation occurred across the
hedge horizon, the DP–GARCH hedge ratios ( b(S)t-2 and b(S)t-1) would be identical to the GARCH
hedge ratios (b(S)GARCH), and there would be no incentive in combining the DP and GARCH
approaches and forecasting several periods ahead. Results reported in Table I also reveal for the
DP–GARCH portfolio that, at most, about 113% of the cash position would have been hedged by
the sugar trader, with the least amount hedged being about 49% of the cash position.

Results reported in Table I and Figure 2 illustrate that the DP–GARCH hedge ratios are quite
erratic, sometimes recommending that about 50% of the hedged position be lifted, or locked into in
just a matter of weeks. Such a recommendation could imply that a trader might incur substantial
transaction costs associated with updating the portfolio. The lower part of Table II reveals that the
OLS hedge ratio (b(S)OLS) for the sugar trader is 0.7104, suggesting somewhat less hedging on average
than either the DP–GARCH model or the static GARCH model. By adopting the OLS, naïve or
unhedged approaches, the hedger would employ the same hedge ratio every week over the entire
time frame, and so this approach shows no variability.

While sample and average hedge ratios are instructive, they tell us little about how the various
models perform. Therefore, an economic significance measure is derived to complement the statis-
tical measure calculated from the time-varying confidence bands. These results, along with other
descriptive statistics, are reported for each model in Table II. Also, for illustration purposes panel
2C presents the time-varying variance percentage improvement of the DP–GARCH model over the
OLS model.

According to Table II there appear to be some gains to using both the GARCH and the
DP–GARCH approach relative to the more basic models in terms of average variance reductions.
The performance of the GARCH model is of no surprise and appears to be very close (in terms of
performance) to other papers that have evaluated its performance (e.g., Baillie and Myers, 1991).
What are the advantages to using the DP–GARCH model compared to the GARCH approach?
According to Table II not much. In particular, the average performance of the DP–GARCH model
that forecasts ahead over the static GARCH is just 0.2203%. This number would clearly be more
significant to a trader hedging a large quantity of sugar, but it might also be of importance to know
the variance around this improvement. While the average hedge ratios appear quite similar and hence
average improvement quite low, there are periods of time when the static model is beaten quite con-
vincingly. For instance, the DP–GARCH outperforms the static GARCH by approximately 9%
around week 104 (not shown). Indeed, the percentage improvement of the DP–GARCH model over
the static GARCH verifies that there are indeed times when the market suddenly and abruptly turns
and the trader following the static GARCH methodology may have lost out. It is clear that on average
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the DP–GARCH approach outperforms this basic alternative (in fact all alternatives), with the worst
performing strategy being the unhedged approach (as one might expect). Interestingly, there are
several times when the DP–GARCH model is outperformed by the OLS (and naïve and unhedged
approaches). However, the negative percentage improvement figures associated with these time
periods are not of large magnitude (see panel 2C), suggesting that even if the DP–GARCH is beaten
by alternatives the trader would not be too heavily penalized.

Table II. Descriptive variance statistics for static and dynamic objectives
for model I

DP–GARCH using b(S)t-2 and b(S)t-1

Avg. 133.210
SE 50.960
Min 62.219
Max 337.382

GARCH, static using just b(S)t-2

Avg. 133.840
SE 51.127
Min 62.346
Max 337.490

OLS, static using b(BA)OLS

Avg. 137.930
SE 53.436
Min 62.565
Max 631.070

Naïve, static using b(BA)NAIVE

Avg. 142.410
SE 60.900
Min 65.803
Max 468.280

Unhedged, static using b(S)UNHEDGED = 0
Avg. 231.670
SE 84.900
Min 104.010
Max 464.700

% Variance reduction from using the DP–GARCH model relative to:
GARCH, static using just b(S)t-2 0.220%
OLS, static using b(BA)OLS 2.840%
Naïve, static using b(BA)NAIVE 5.118%
Unhedged, static using b(S)UNHEDGED = 0 42.274%

Note: The annualized discount rate, r, is 0.10. Avg. denotes sample average, SE
denotes the corresponding standard deviation. Min is the sample minimum and Max
is the sample maximum. Results are based on 212 weekly hedging periods. The
DP–GARCH model uses the optimal hedging ratios generated from the cash and
futures settlement prices. The GARCH, static model only employs the hedging ratio
developed in t - 2, and does not optimally update. The OLS model uses the hedging
ratio developed from a simple regression of the futures settlement price on the cash
price. The naïve and unhedged ratios are set equal to 1 and 0, respectively.
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Hedging results: model II
Results presented on the right-hand side of Table I verify that not only are the average hedging ratios
lower in model II compared to model I, but their variability is also lower. For instance, at time t -
2 the average optimal hedging ratio associated with the DP–GARCH model that uses bid and ask
prices (b(BA)t-2) is 0.7476 compared to the average ratio recommended in model I ( b(S)t-2) of 0.7613.
A similar pattern emerges in t - 1 whereby the average optimal hedging ratio (b(BA)t-1) is 0.7490 
compared to the hedge ratio of 0.7627 recommended by model I. These results seem to verify the
findings of GLM (1998) that hedging ratios estimated in a portfolio tend to be lower than those esti-
mated in a bivariate setting (suggesting lower transaction costs). The other important observation is
the fact that the standard errors around the average hedging ratios are much lower in model II com-
pared to model I. In particular the standard errors associated with b(BA)t-2 and b(BA)t-1 in model II are
0.0459 and 0.0420 respectively, whereas the corresponding standard errors in model I are 0.1288
and 0.1287—about three times as large. Comparing the OHRs for model I and model II, complete
with their confidence bands, suggests that the OHRs from the DP–GARCH framework in model II
are far more stable but do experience time-variation (this is not shown but is available upon request).
The hedging ratios from the DP–GARCH framework in model I are much more volatile.

Table III presents the descriptive variance statistics for all the models and how they compare 
to the bid–ask DP–GARCH approach. The results are quite striking. Model II (DP–GARCH using
b(BA)t-2 and b(BA)t-1) appears to outperform, in terms of reduced variability, model I (DP–GARCH using
b(S)t-2 and b(S)t-1) by 1.833%, which on the surface does not seem like a dramatic improvement.
However, as described previously, averages can be deceiving and it is found that when the model I
hedge ratios are extremely volatile the trader would lose out by following that approach, if the true
model was indeed the model incorporating the bid and the ask prices (model II). It is clear from
Table III that the DP–GARCH model that utilizes both b(BA)t-2 and b(BA)t-1 outperforms all the ‘basic’
alternatives, beating the unhedged model by 52.105%. The OLS model performs better when 
evaluated against model II (compared to model I) because the OLS hedging ratios are closer to the
DP–GARCH hedge ratios, simply because the DP–GARCH ratios are less volatile as they were esti-
mated in a portfolio setting. Unlike the case of model I, while the percentage improvement over the
OLS approach is lower, the DP–GARCH model is never beaten by the simpler alternative. The same
results are obtained for the naïve and unhedged approach.

While the DP–GARCH approach using b(BA)t-2 and b(BA)t-1 performs the best out of the simpler
alternatives, it does not seem to significantly outperform the static DP–GARCH approach (that just
utilizes b(BA)t-2). Indeed the percentage reduction from using the dynamic model over the static
approach is 0.099%, suggesting that multi-period-ahead forecasting may not actually be worthwhile.
Again, this result is not particularly surprising given the finding that the OHRs do not vary as much
as the DP–GARCH model presented in model I. However, traders are probably more interested in
the distribution of the variability of the improvement over time. To this end, Figure 3 provides more
evidence on this. Firstly, the upper panel illustrates that in general the hedge ratios generated from
the dynamic DP–GARCH (b(BA)t-2 and b(BA)t-1) are not, in general, statistically different from the hedge
ratio employed both periods in the static version (b(BA)t-2). That is, the confidence bands overlap for
most of the period of time analysed. One might suspect therefore that if there is no statistical dif-
ference between the OHRs then there might not be any improvement, from an economic sense. The
lower panel illustrates that when the percentage improvement is very low (e.g., week 40 to week
100) the OHRs are statistically indistinguishable. However, when the market suddenly and abruptly
turns—around week 107—(see the graphical inset in the upper panel), the performance of the
dynamic approach improves. This may lead us to a simple conclusion. The dynamic hedging ratios
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Table III. Descriptive variance statistics for static and dynamic objectives for model II

DP–GARCH using b(BA)t-2 and b(BA)t-1

Avg. 237.750
SE 42.855
Min 148.560
Max 515.460

GARCH, static using just b(BA)t-2

Avg. 238.013
SE 43.155
Min 148.960
Max 517.810

DP–GARCH using b(S)t-2 and b(S)t-1

Avg. 242.131
SE 42.672
Min 150.823
Max 524.361

GARCH, static using just b(S)t-2

Avg. 242.850
SE 43.103
Min 150.621
Max 526.082

OLS, static using b(BA)OLS

Avg. 239.079
SE 43.144
Min 151.824
Max 527.319

Naïve, static using b(BA)NAIVE

Avg. 269.283
SE 57.064
Min 160.308
Max 656.380

Unhedged, static using b(BA)UNHEDGED = 0
Avg. 494.356
SE 58.082
Min 359.168
Max 822.060

% Variance reduction from using the DP–GARCH model relative to:
GARCH, static using just b(BA)t-2 0.099
GARCH, dynamic using b(S)t-2 and b(S)t-1 1.833
GARCH, static using just b(S)t-2 2.095
OLS, static using b(BA)OLS 0.567
Naïve, static using b(BA)NAVIE 11.297
Unhedged 52.105

Note: The DP–GARCH model uses the hedging ratios generated from cash and bid and ask prices. The GARCH, static also
employs the cash, bid and ask prices but only the hedging ratio developed in t - 2, and does not optimally update. The
DP–GARCH (using the b(S) ratios) is the bid–ask model that employs both the hedging ratios developed from model I. 
The GARCH static also uses the bid–ask model, but employs the hedging ratio from model I (b(S)t-2). The OLS model uses
the hedging ratio developed from a simple regression of the futures settlement price on the cash price. The naïve and unhedged
ratios are set equal to 1 and 0, respectively.
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Figure 3. Model II hedge ratios at t - 1, t - 2 with confidence bands (panel 3A) and percentage improvement
over the static version of model II (panel 3B)
Note: Model II utilizes the optimal hedges established at t - 2 and then updates by using the optimal hedge
ratio at t - 1. The static model II utilizes the optimal hedge established at t - 2 in both periods.
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are forward-looking (they are forecasts) and so if the new hedge ratio (b(BA)t-1) is not different from
the older hedge ratio (b(BA)t-2) from a statistical sense, then it is unlikely that any economic reward
will be yielded. Consequently, the trader would save on transaction costs from updating the old hedge
ratio.

CONCLUSIONS

In this paper several questions were addressed simultaneously. Are there any advantages to com-
bining two hedging strategies that rely on forecasting—dynamic programming (DP) and time-series
econometrics (GARCH) models whilst accounting for variability in the bid–ask spread? Are the 
generated optimal hedging ratios from this approach statistically different from more standard
approaches? Are there any economic gains to be enjoyed by combining the approaches and there-
fore forecasting volatilities several periods ahead, and are there certain times when a trader follow-
ing a more basic strategy loses out? On all counts the results here are encouraging. First, given the
ability to forecast volatilities enables us to derive a rule for developing the optimal DP–GARCH
hedge ratios using cash and futures settlement price data. Second, using the delta method, time-
varying confidence bands were obtained such that a trader could distinguish whether or not optimal
hedging ratios are statistically different from other models.

While the DP–GARCH model does slightly outperform the static GARCH approach on average,
results verify that a trader that forecasts with the static GARCH approach would lose out when 
the market suddenly and abruptly turns. Incorporating bid–ask prices into the trader’s portfolio
resulted in hedge ratios lower than those recommended in the portfolio using just settlement and
cash prices, suggesting lower transaction costs, with much less volatility associated with the 
forecasted hedging ratios. While the gains from following the DP–GARCH approach after account-
ing for the bid–ask spread over the static approach are small, on average there are times that the
trader would lose out when the market suddenly and abruptly turns, just like in the more basic model
that ignores the spread. The more sophisticated forecasting models like DP–GARCH or static
GARCH that ignore the bid–ask spread are outperformed by more stable hedging strategies like the
OLS, when evaluated in the bid–ask environment. This result is also consistent with previous
research whereby ignoring a natural portfolio results in far more volatile hedge ratios, which may
induce risk rather than reduce it. The implication here being that if the true portfolio relevant to the
trader really does incorporate the bid–ask prices (which should be more readily available with the
electronic platform), then the system to be estimated should involve three price series rather than
two.

This research shows that if the forecasts of the DP–GARCH model incorporating the bid–ask
spread suggest a statistically significantly different hedging ratio compared to the hedge ratio
employed the previous period, the trader should update the portfolio. Alternatively, in more stable
periods, the trader should continue forecasting with a static GARCH model that uses all three prices
relevant to the trader, and enjoy potentially lower transaction costs.
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