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SIMPLE SOLUTIONS TO THE INITIAL CONDITIONS
PROBLEM IN DYNAMIC, NONLINEAR PANEL DATA
MODELS WITH UNOBSERVED HETEROGENEITY
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SUMMARY

I study a simple, widely applicable approach to handling the initial conditions problem in dynamic, nonlinear
unobserved effects models. Rather than attempting to obtain the joint distribution of all outcomes of the
endogenous variables, I propose finding the distribution conditional on the initial value (and the observed
history of strictly exogenous explanatory variables). The approach is flexible, and results in simple estimation
strategies for at least three leading dynamic, nonlinear models: probit, Tobit and Poisson regression. I treat
the general problem of estimating average partial effects, and show that simple estimators exist for important
special cases. Copyright © 2005 John Wiley & Sons, Ltd.

1. INTRODUCTION

In dynamic panel data models with unobserved effects, the treatment of the initial observations
is an important theoretical and practical problem. Much attention has been devoted to dynamic
linear models with an additive unobserved effect, particularly the simple AR(1) model without
additional covariates. As is well known, the usual within estimator is inconsistent, and can be
badly biased. [See, for example, Hsiao (1986, section 4.2).]

For linear models with an additive unobserved effect, the problems with the within estimator
can be solved by using an appropriate transformation—such as differencing—to eliminate the
unobserved effects. Then, instrumental variables (IV) can usually be found for implementation
in a generalized method of moments (GMM) framework. Anderson and Hsiao (1982) proposed
IV estimation on a first-differenced equation, while several authors, including Arellano and Bond
(1991), Arellano and Bover (1995), Ahn and Schmidt (1995), improved on the Anderson—Hsiao
estimator by using additional moment restrictions in GMM estimation. More recently, Blundell and
Bond (1998) and Hahn (1999) have shown that imposing restrictions on the distribution of initial
conditions can greatly improve the efficiency of GMM over certain parts of the parameter space.

Solving the initial conditions problem is notably more difficult in nonlinear models. Generally,
there are no known transformations that eliminate the unobserved effects and result in usable
moment conditions, although special cases have been worked out. Chamberlain (1992) finds
moment conditions for dynamic models with a multiplicative effect in the conditional mean, and
Wooldridge (1997) considers transformations for a more general class of multiplicative models.
Honoré (1993) obtains orthogonality conditions for the unobserved effects Tobit model with
a lagged dependent variable. For the unobserved effects logit model with a lagged dependent

* Correspondence to: Professor Jeffrey M. Wooldridge, Department of Economics, Michigan State University, East
Lansing, MI 48824-1038, USA. E-mail: wooldril @msu.edu

Copyright © 2005 John Wiley & Sons, Ltd. Received 12 July 2002
Revised 11 September 2003



40 J. M. WOOLDRIDGE

variable, Honoré and Kyriazidou (2000) find an objective function that identifies the parameters
under certain assumptions on the strictly exogenous covariates.

The strength of semiparametric approaches is that they allow estimation of parameters without
specifying a distribution for the unobserved effect. Unfortunately, semiparametric identification
hinges on some strong assumptions concerning the strictly exogenous covariates; for example, time
dummies are not allowed in the Honoré and Kyriazidou (2000) approach. Honoré and Kyriazidou
also reduce the sample to cross-sectional units with no change in any discrete covariates over the
last two time periods.

Another practical limitation of the Honoré (1993) and Honoré and Kyriazidou (2000)
estimators—and one that often goes unnoticed—is that partial effects on the response proba-
bility or conditional mean are not identified. Therefore, the absolute importance of covariates, or
the amount of state dependence, cannot be determined from semiparametric approaches.

In this paper I reconsider the initial conditions problem in a parametric framework for nonlinear
models. A parametric approach has its usual drawbacks because I specify an auxiliary conditional
distribution for the unobserved heterogeneity; misspecification of this distribution generally results
in inconsistent parameter estimates. Nevertheless, in some leading cases the approach I take leads
to some remarkably simple maximum likelihood estimators. Further, I show that the assumptions
are sufficient for uncovering the quantities that are usually of interest in nonlinear applications:
partial effects on the mean response, averaged across the population distribution of the unobserved
heterogeneity.

Previous research in parametric, dynamic nonlinear models has focused on three different
ways of handling initial conditions; these are summarized by Hsiao (1986, section 7.4). The first
approach is to treat the initial conditions for each cross-sectional unit as nonrandom variables.
Unfortunately, nonrandomness of the initial conditions, y;y, implies that y;y is independent of
unobserved heterogeneity, ¢;. Even when we observe the entire history of the process {y;}, the
assumption of independence between ¢; and y;y is very strong. For example, suppose we are
interested in modelling earnings of college graduates once they leave college, and y;q is earnings
in the first post-school year. That we observe the start of this process is logically distinct from the
strong assumption that unobserved ‘ability’ and ‘motivation’ are independent of initial earnings.

A better approach is to allow the initial condition to be random, and then to use the joint
distribution of all outcomes on the response—including that in the initial time period— conditional
on unobserved heterogeneity and observed strictly exogenous explanatory variables. The main
complication with this approach is specifying the distribution of the initial condition given
unobserved heterogeneity. Some authors insist that the distribution of the initial condition represent
a steady-state distribution. While the steady-state distribution can be found in special cases—such
as the first-order linear model without exogenous variables [see Bhargava and Sargan (1983) and
Hsiao (1986, section 4.3)] and in the unobserved probit model without additional conditioning
variables [see Hsiao (1986, section 7.4)]—it cannot be done for even modest extensions.

For the dynamic probit model with covariates, Heckman (1981) proposed approximating the
conditional distribution of the initial condition. This avoids the practical problem of not being able
to find the conditional distribution of the initial value. But, as we will see, it is computationally
more difficult than necessary for obtaining both parameter estimates and estimates of averaged
effects in nonlinear models.

The approach I suggest in this paper is to model the distribution of the unobserved effect
conditional on the initial value and any exogenous explanatory variables. This suggestion has been
made before for particular models. For example, Chamberlain (1980) mentions this possibility for
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the linear AR(1) model without covariates, and Blundell and Smith (1991) study the conditional
maximum likelihood estimator of the same model; see also Blundell and Bond (1998). For the
binary response model with a lagged dependent variable, Arellano and Carrasco (2003) study
a maximum likelihood estimator conditional on the initial condition, where the distribution of
the unobserved effect given the initial is taken to be discrete. When specialized to the binary
response model, the approach here is more flexible, and computationally much simpler: the
response probability can have the probit or logit form, strictly exogenous explanatory variables are
easily incorporated along with a lagged dependent variable, and standard random effects software
can be used to estimate the parameters and averaged effects.

Specifying a distribution of heterogeneity conditional on the initial condition has several
advantages. First, we can choose the auxiliary distribution to be flexible, and view it as an
alternative approximation to Heckman’s (1981). Second, in several leading cases—probit, ordered
probit, Tobit and Poisson regression—an auxiliary distribution can be chosen that leads to
straightforward estimation using standard software. Third, partial effects on mean responses,
averaged across the distribution of unobservables, are identified and can be estimated without
much difficulty. I show how to obtain these partial effects generally in Section 4, and Section 5
covers the probit and Tobit models.

2. EXAMPLES

We introduce three examples in this section to highlight the important issues; we return to these
examples in Section 5.

Example 1 (Dynamic Probit Model with Unobserved Effect): For a random draw i from the
population and t = 1,2, ..., T:

P(yir = Uyis=1s -+, Yio, Zi, ¢i) = @@y + pYi—1 + ¢i) (1)

This equation contains several assumptions. First, the dynamics are first order, once z; and c;
are also conditioned on. Second, the unobserved effect is additive inside the standard normal
cumulative distribution function, ®. Third, the z; satisfy a strict exogeneity assumption: only z;
appears on the right-hand side, even though z; = (z;, ..., Z;;) appears in the conditioning set on
the left. Naturally, z; can contain lags, and even leads, of exogenous variables.

As we will see in Sections 3 and 4, the parameters in equation (1), as well as average partial
effects, can be estimated by specifying a density for ¢; given (v, Z;). A homoscedastic normal
distribution with conditional mean linear in parameters is very convenient, as we will see in
Section 5. [J

Example 2 (Dynamic Tobit Model with Unobserved Effect): Consider

yie = max[0, z;y + g(yi—1)p + ¢ + uy] 2)
Wit Vi1, - - -, Yio» Zi, ¢; ~ Normal(0, o7) ©)
for t =1,2,...,T. This model applies to corner solution outcomes, where y; is an observed

response that equals zero with positive probability but is continuously distributed over strictly
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positive values. It is not well suited to true data censoring applications, as in that case we would
want a lagged value of the latent variable underlying equation (2) to appear. The function g(-)
allows the lagged value of the observed response to appear in a variety of ways. For instance, we
might have g(y_;) = {I[y_; = 0], 1[y_; > 0]log(y—)}, which allows the effect of lagged y to
be different depending on whether the previous response was a corner solution (zero) or strictly
positive. In this case, p is 2 x 1.

Honoré (1993) proposes orthogonality conditions that identify the parameters, but partial effects
are unidentified. We will show how to obtain +/N-consistent estimates of the parameters and
average partial effects in Section 5. OJ

Example 3 (Dynamic Unobserved Effects Poisson Model): For each t =1,...,T, y; given
(Yit—1, - - -5 Yio, Zi, ¢;) has a Poisson distribution with mean

E(ilyii—15 - -+ Yios Zi, ¢i) = c;explzyy + g(yi,1—1)p] 4)

Again, we allow for the lagged dependent variable to appear in a flexible fashion, perhaps as a set
of dummy variables for specific outcomes on y; ,—;. The null hypothesis of no state dependence
is Hp: p = 0. Chamberlain (1992) and Wooldridge (1997) have proposed orthogonality conditions
based only on equation (4), where no conditional distributional assumptions are needed for y;; or
¢;. Unfortunately, because the moment conditions have features similar to using first differences in
a linear equation, the resulting GMM estimators can be very imprecise (even though the parameters
would be generally identified). In Section 5 we show how a particular model for a conditional
distribution for ¢; leads to a simple maximum likelihood analysis. [J

3. GENERAL FRAMEWORK

Let i index a random draw from the cross-section, and let ¢ denote a particular time period.
Initially, we assume that we observe (z;,y;),t = 1,...,T, along with y;o. We are interested in
the conditional distribution of y;, € RS given (z;y, yi—1, €;), where z;; is a vector of conditioning
variables at time 7 and ¢; € R’ is unobserved heterogeneity. (The dimension of z; could be
increasing with ¢, but in our examples its dimension is fixed.) We denote the conditional distribution
by D(yi |z, yi;—1, €;). The asymptotic analysis is with the number of time periods, 7, fixed, with
the cross-section sample size, N, going to infinity.

We make two key assumptions on the conditional distribution of interest. First, we assume
that the dynamics are correctly specified. This means that at most one lag of y; appears in
the distribution given outcomes back to the initial time period. Second, z; = {z;, ..., Z;} is
appropriately strictly exogenous, conditional on ¢;. Both of these can be expressed as follows.

Assumption 1: Fort=1,2,...,T:
D(yilzi, ¥i,i—1, ¢) = D(YirlZi, Yii—1, - . -, Yio, €) (5)

We next assume that we have a correctly specified parametric model for the density representing
equation (5) which, for lack of a better name, we call the ‘structural’ density.
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Assumption 2: For r=1,2,..., T, f,(y/|z:, yi—1, ¢;0) is a correctly specified density for the
conditional distribution on the left-hand side of equation (5), with respect to a o-finite measure
v(dy;). The parameter space, ®, is a subset of RP. Denote the true value of 8 by 6, € ©.

The requirement that we have a density with respect to a o-finite measure is not restrictive in
practice. If y; is purely discrete, v is a counting measure. If y, is continuous, v is a Lebesgue
measure. An appropriate o-finite measure can be found for all of the possible response variables
of interest in economics.

Most specific analyses of dynamic, nonlinear unobserved effects models begin with assumptions
similar to 1 and 2. Together, Assumptions 1 and 2 imply that the density of (y;i, ..., yir) given
(Yio = Yo. 2z =2,¢; = ¢) is

T
11 7 ivilze yio1. :6,) 6)
=1
where we drop the i subscript to indicate dummy arguments of the density. In using equation (6) to
estimate 6,, we must confront the fact that it depends on the unobservables, ¢. One possibility is
to construct the log-likelihood function that treats the N unobserved effects, ¢;, as (vectors of)
parameters to be estimated. This leads to maximizing the function

N T
Zzlogft(yitlzitvyi,t—laci;e) 7)
i=1 t=1

over 6 and (cy, ..., cy). While this approach avoids having to restrict the distribution of ¢;, it

suffers from an incidental parameters problem with fixed T: except in very special cases, the
estimator of 6, is inconsistent.

The alternative is to ‘integrate out’ the unobserved effect. As we discussed in the Introduction,
there have been several suggestions for doing this. A popular approach is to find the density of
(Yo, i1, - - - » Yir) given z;. If we specify f(yo|z, ¢) then

f(YO, Yi,..-s YT|Z, C) = f(YL e YT|YO7 z, C) : f(YO|Z, C) (8)

Next, we specify a density f(c|z). We can then integrate equation (8) with respect to this density
to obtain f(yo, 1, ..., Y7|Z).

Rather than trying to find the density of (yjo, yi1,--.,Yir) given z;, my suggestion is to
use the density of (y;i,...,Yyir) conditional on (y;o, Z;). Because we already have the density
of (yi1, ..., Yyir) conditional on (y,o, Z;, ¢;)—given by equation (6)—we need only specify the
density of ¢; conditional on (y;o, Z;). Because this density is not restricted by the specification
in Assumption 2, we can choose it for convenience, or flexibility or, hopefully, both. As
in Chamberlain’s (1980) analysis of unobserved effects probit models with strictly exogenous
explanatory variables, we view the device of specifying f(c|yo, z) as a way of obtaining relatively
simple estimates of 6,. Specifying a model for f(c|yo, z) seems no worse than having to specify
models for f(yo|z, ¢), which must themselves be viewed as approximations, except in special
cases where steady-state distributions can be derived.

Assumption 3: /&(clyo, z; ) is a correctly specified model for the density of D(c;|y;o, z;) with
respect to a o-finite measure n(de). Let A C RM be the parameter space and let 8, denote the true
value of é.
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Assumption 3 is much more controversial than Assumptions 1 and 2. Ideally, we would not
have to specify anything about the relationship between ¢; and (y;o, z), whereas Assumption 3
assumes we have a complete conditional density correctly specified. In some specific cases—linear
models, logit models, Tobit models and exponential regression models—consistent estimators of
6, are available without Assumption 3. But these estimators are complicated and need not have
good precision.

Under Assumptions 1, 2 and 3, the density of (y;i, ..., yir) given (Y0 = Yo, Z; = Z) is

T
/R J (H Fiilze Yo ¢ oo>> h(elyo. z: 8)n(de) ©)
t=1

which leads to the log-likelihood function conditional on (y;o, Z;) for each observation i:

T
£i(6, 8) = log l/J (H Ji(Yie|Zir, Yi—1, € 9)) h(clyio, Zi;5)n(dc)] (10)
R\ /=1
To estimate 6, and §,, we sum the log-likelihoods in equation (10) across i = 1, ..., N and maxi-

mize with respect to 8 and 8. The resulting conditional MLE is +/N-consistent and asymptotically
normal under standard regularity conditions. In dynamic unobserved effects models, the log-
likelihoods are typically very smooth functions, and we usually assume that the needed moments
exist and are finite. From a practical perspective, identification is the key issue. Generally, if
D(c;ilyio, z;) is allowed to depend on all elements of z; then the way in which any time-constant
exogenous variables can appear in the structural density is restricted. To increase explanatory
power, we can include time-constant explanatory variables in z;, but we will not be able to sep-
arately identify the partial effect of the time-constant variable from its partial correlation with c;.

The log-likelihood in equation (10) assumes that we observe data on all cross-sectional units in
all time periods. Nevertheless, for unbalanced panels under certain sample selection mechanisms,
we can use the same conditional log-likelihood for the subset of observations constituting a
balanced panel. Let s; be a selection indicator: s; = 1 if we observe data in all time periods
(including y;p), and zero otherwise. Then, if (y;i, ..., y;r) and s; are independent conditional on
(Yi0, Z;), the MLE using the balanced panel will be consistent, and the usual asymptotic standard
errors and test statistics are asymptotically valid. Consistency follows from the general argument
in Wooldridge (2002, section 17.2.2).

When attrition is an issue, obtaining the density conditional on (y;o, z;) has some advantages
over the more traditional approach, where the density would be conditional only on z;. In particular,
the current approach allows attrition to depend on the initial condition, y;o, in an arbitrary way. For
example, if y;o is annual hours worked, an MLE analysis based on equation (10) allows attrition
probabilities to differ across initial hours worked. In the traditional approach, one would have to
explicitly model attrition as a function of y;y and figure out the appropriate Heckit-type analysis.

Of course, reducing the data set to a balanced panel can discard useful information. But available
semiparametric methods have the same feature. For example, the objective function in Honoré
and Kyriazidou (2000) includes differences in the strictly exogenous covariates for 7 = 3. Any
observation where Az;, is missing for = 2 or 3 cannot contribute to the analysis.
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4. ESTIMATING AVERAGE PARTIAL EFFECTS

In nonlinear models we often need to go beyond estimation of the parameters, 6,, and obtain
estimated partial effects. Typically, we would like the effect on a mean response after averaging
the unobserved heterogeneity across the population. I now show how to construct consistent,
/N-asymptotically normal estimators of these average partial effects (APEs).

Let g(y;) be a scalar function of y, whose conditional mean we are interested in at time ¢. The
leading case is g(y;) = y, when y, is a scalar, but ¢g(-) could be an indicator function if we are
interested in probabilities. Generally, we are interested in

m(z;, y;i—1, ¢, 0,) = Elg(yi)|Zir = 2;,¥i1—1 = ¥i—1, ¢ = ¢)]

= /]RG q(y:) f1(¥elzs, yi—1, € 6,)v(dy;) (11)

where z;, y;—; and c¢ are values that we must choose. Unfortunately, since the unobserved
heterogeneity rarely, if ever, has natural units of measurement, it is unclear which values we
should plug in for c. Instead, we can hope to estimate the partial effects averaged across the
distribution of ¢;. That is, we estimate

w(zs, yi-1) = Elm(z, yi-1, € 6,)] 12)

where the expectation is with respect to ¢;. (For emphasis, variables with an i subscript are random
variables in the expectations; others are fixed values.) Under Assumptions 1, 2 and 3, we do not
have a parametric model for the unconditional distribution of ¢;, and so it may seem that we
need to add additional assumptions to estimate equation (12). Instead, we can obtain a consistent
estimator of equation (12) using iterated expectations:

El[m(z;, yi-1, ¢i;6,)] = E{E[m(z;, y,—1, €i; 0,)|yi0, Z:]}

=E l:(/]RG q(y ) fi(yilze, yi—1, ¢ Bo)v(dy,)) h(clyio, 2i; 8,)n(de) (13)

where the outside, unconditional expectation is with respect to the distribution of (y;o, z;). While
equation (13) is generally complicated, it simplifies considerably in some leading cases, as we will
see in Section 5. In effect, we first compute the expectation of g(y;; ) conditional on (z;, y; ;—1, €:),
which is possible because we have specified the density f,(y;|z;, y,—1, ¢;0,). Then, we (hopefully)
integrate m(z;, y,—1, ¢) against h(c|y,o, Z;; 8,) to obtain E[m(z, y;—1, ¢;;0,)|Yi0, Zi].

One point worth emphasizing about equation (13) is that §, appears explicitly. In other words,
while &, may be properly viewed as a nuisance parameter for estimating 6,, 8, is not a nuisance
parameter for estimating APEs. Because the semiparametric literature treats h(c|yg, Z) as a nuisance
function, there seems little hope that semiparametric approaches will deliver consistent estimates
of APEs in dynamic, unobserved effects panel data models.

Given equation (13), a consistent estimator of u(z;, y,—;) follows immediately:

N
Rz y-) =N r@. yio1. vio. 26, ) (14)

i=1
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where r(z,, y,—1, Yi0, Zi; 0o, 8o) = E[m(z,, y,—1, €3 6,)|yi0, Z;]. Under weak assumptions, fi(z;, y,—1)
is a +/N-asymptotically normal estimator of u(z;, y;—1), whose asymptotic variance can be obtained
using the delta method.

5. THE EXAMPLES REVISITED

We reconsider the examples from Section 2, showing how we can apply the results from Sections 3
and 4. Our focus is on choices of the density A(c|yo, z; 8) that lead to computational simplicity.
For notational convenience, we drop the ‘o’ subscript on the true values of the parameters.

5.1. Dynamic Probit and Ordered Probit Models

In addition to equation (1), assume that
cilyio, z; ~ Normal(g + a1 yio + 22, ;) (15)

where z; is the row vector of all (nonredundant) explanatory variables in all time periods. If z;
contains a full set of time period dummy variables these elements would be dropped from z;. The
presence of z; in equation (15) means that we cannot identify the coefficients on time-constant
covariates in z;, although time-constant covariates can be included in z; in equation (15).

Given equation (1), we can write

T

oLy vl z 6B = [[(@@y + py1 + 00"
=1

X [1— @@y + py1+o)]' ™} (16)

where B = (¥, p)’. When we integrate equation (16) with respect to the normal distribution in
equation (15), we obtain the density of D(y;1, ..., Yir|Yio, Zi)-

It turns out that we can specify the density in such a way that standard random effects probit
software can be used for estimation. If we write

¢i = ag+a1yio + ziex + a; (17)
where a;|(y0, Z;) ~ Normal(0, 03), then y;, given (yi;—1, ..., Yio,Zi, a;) follows a probit model
with response probability

D(zyy + pYi—1 + o +aryio + Zios + a;) (18)

This is easy to derive by writing the latent variable version of the model as y}; = z;y + pyi—1 +
¢; + u; and plugging in for ¢; from equation (17):

Vi =Zay+ pyi—1 + o + o1 yio + Ziey + a; + uy (19)
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where u; |(Z;, Yii—1, .-, Yio, a;) ~ Normal(0, 1); equation (18) follows. Thus, the density of
(it, - yir) given (yio = Yo,z =2, a; = a) is

T

[[(@ @y + pyi—1 + a0 + o130 + 22 + @)

=1
x [1 — ®(z,y+ pyi—1 + oo + a1y + zas +a)]' ™) (20)

and integrating equation (20) against the Normal (0, o,f) density gives the density of (y;1, ..., yir)
given (yio = Yo, % = 2):

T
/ (H{¢(Zz}’+ pYi—1 + o + a1y + zay + Cl)y’>
R

=1
x [1— @@y + pyi—1 + a0 + 1Yo + zaz + a)]' ™} (1/0,)p(a/o,)da 21)

Interestingly, the likelihood in equation (21) has exactly the same structure as in the standard
random effects probit model, except that the explanatory variables at time period ¢ are

Xy = (1, Zi, Yi—1, Yio, Zi) (22)

Importantly, we are not saying that g; is independent of y; ,_;, which is impossible. (Dependence
between a; and y;,_; means that a pooled probit analysis of y; on X; is inconsistent for
the parameters and the APEs.) Further, the density in equation (21) is not the joint density of
(vi1» - --» ¥iT) given (X1, - . ., X;7), as happens in the case with strictly exogenous x;,. Nevertheless,
the way random effects probit works is by forming the products of the densities of y; given (x;, a;),
and then integrating out using the unconditional density of g;, and this is what equation (21) calls
for. So we add y;y and z; as additional explanatory variables in each time period and use standard
random effects probit software to estimate y, p, o, o1, op and af.

Under the assumptions made, we can easily obtain estimated partial effects at interesting values
of the explanatory variables. The average partial effects are based on

E[®(z;y + py,—1 + ¢i)] (23)

where the expectation is with respect to the distribution of ¢;. The general formula in
equation (14) turns out to be easy to obtain. Again, replace ¢; with ¢; = g + o1 yio + Zia2 + a;,
so that expression (23) is

E[®(z;y + pyi—1 + g + o1 yio + Zixtz + a;)] (24)

where the expectation is over the distribution of (yy, Z;, a;);z; and y,_; are fixed values here.
Now, as in Section 4, we use iterated expectations:

E[®(zy + pyi—1 + a0 + @1 yi0 + Ziox + a;)]
= E{E[®(z;y + pyi—1 + a0 + a1Yio + ziaz + a;)|Yio, Zi]} (25)
The conditional expectation inside equation (25) is easily shown to be
D(2;¥a + PaYr—1 + dap + a1 Yio + Zi@a2) (26)

Copyright © 2005 John Wiley & Sons, Ltd. J. Appl. Econ. 20: 39—54 (2005)
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where the ‘a’ subscript denotes the original parameter multiplied by (1 + 02)~1/2. Now, we want

to estimate the expected value of expression (26) with respect to the distribution of (yj, z;). A
consistent estimator is

N
NT! Z D (2, ¥ + PaYi—1 + Qa0 + Qa1 Yio + Zi@a2) (27)

i=1

where the ‘a’ subscript now denotes multiplication by (1 +8§)_1/2, and y, p, &g, &1, @ and
52 are the MLEs. We can compute changes or derivatives of expression (27) with respect
to z, or y,_; to obtain APEs. Thus, we can determine the economic importance of any state
dependence.

Allowing for a more flexible conditional mean in equation (15) is straightforward, provided the
mean is linear in parameters. For example, including interactions between y;o and z; is simple, and
would be warranted if we included interactions between the elements of z;; and y;,_; in the struc-
tural model. Allowing for heteroscedasticity in Var(c;|yio, Z;) is more complicated and would
probably require special programming. Still, specifying, say, Var(c;|yio,Z;) = Ufo exp(y1yio +
z;y>) leads to a tractable log-likelihood function: simply replace o, in equation (21) with
oulexp(y1yio + ziy2)1/?. With a;|yio, z; ~ Normal(0, o2, exp(y1yio + Zi¥»)), the conditional expec-
tation in equation (25) is still easy to obtain: E[®(z,y + py,—1 + g + o1 yio + Ziaz + a;)|Vio, Zi] =
D{(z;y + pyi—1 + o + aryio + Ziaa)/ (1 + o7 [exp(y1 yio + Ziy2)]'/?)}—see  Wooldridge [2002,
problem 15.18(c)] for the static case—and so APEs would be readily computable by averaging
across i.

Certain specification tests are easy to compute. For example, after estimating the basic model,
terms such as (& yio + z;&>)* and (& yio + z;&>)* could be added and their joint significance tested
using a standard likelihood ratio test. Obtaining score tests for exponential heteroscedasticity in
Var(c;|yio, Z;) or for nonnormality in D(c;|yio, ;) are good topics for future research.

The binary probit model extends in a straightforward way to a dynamic ordered probit model.
If y; takes on values in {0, 1,...,J} then we can specify an ordered probit model with J
lagged indicators, 1[y;;—1 = jl. j =1,...,J, and strictly exogenous explanatory variables, z;.
The underlying latent variable model would be y} = z;y+r;;,—1p+ ¢; + e;;, where r; ,_; is the
vector of J indicators, and e;; has a conditional standard normal distribution. The observed value,
i, is determined by y} falling into a particular interval, where the cut-points must be estimated.
If we specify D(c;|y;0, ;) as having a homoscedastic normal distribution, standard random effects
ordered probit software can be used. Probably we would allow h(c|yo, z; ) to depend on a full
set of indicators 1[y,o = jl,j=1,...,J.

Certainly there are some criticisms that one can make about the conditional MLE approach
for dynamic probit models. First, suppose that there are no covariates. Then, unless o) =
0, equation (15) implies that ¢; has a mixture-of-normals distribution, rather than a normal
distribution, as would be a standard assumption. But ¢; given y;y has some distribution, and
it is unclear why an unconditional normal distribution for ¢; is a priori better than a conditional
normal distribution. For cross-sectional binary response models, Geweke and Keane (1999) find
that, empirically, mixture-of-normals probit models fit significantly better than the standard probit
model. Granted, the mixing probability here is tied to yy, and the variance is assumed to be
constant. But often is econometrics we assume that unobserved heterogeneity has a conditional
normal distribution rather than an unconditional normal distribution.
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Related to the previous criticism is that, in models without covariates, equation (15) implies a
distribution D(yjo|c;) different from the steady-state distribution. This is not ideal—in the linear
model, one can allow for a non-steady-state distribution while including the steady-state distribution
as a special case—but it is only relevant in models without covariates. Plus, even if there are no
covariates, it is not clear why imposing a steady-state distribution is better than that implied by
equation (15). Dynamic panel data models are really about modelling the conditional distributions
in Assumption 1. One can take issue with any set of auxiliary assumptions.

Another criticism is that if p = 0 then, because c; given z; cannot be normally distributed unless
a; = 0, the model is not compatible with Chamberlain’s (1980) static random effects probit model.
That the model here does not encompass Chamberlain’s is true, but it is unclear why normality
of ¢; given z; is necessarily a better assumption than normality of ¢; given (yy, Z;). Both are only
approximations to the truth and, when estimating a dynamic model, it is much more convenient
to use equation (15). Plus, Chamberlain’s static model does not allow estimation of either p or
the amount of state dependence, as measured by the average partial effect.

Assumption (15) is also subject to the same criticism as Chamberlain’s (1980) random effects
probit model with strictly exogenous covariates. Namely, if we want the same model to hold for
any number of time periods 7, the normality assumption in equation (15) imposes distributional
restrictions on the z;. For example, suppose «; = 0. Then, for equation (15) to hold for 7 and
T — 1, z;ayr given (z;y, ..., z; 7—1) would have to have a normal distribution. While theoretically
this is a valid criticism, it is hardly unique to this setting. For example, every time an explanatory
variable is added in a cross-sectional probit analysis, the probit model can no longer hold unless
the new variable is normally distributed. Yet researchers regularly use probit models on different
sets of explanatory variables.

5.2. Dynamic Tobit Models

For the Tobit model the density in Assumption 2 is

filze, yi—1,¢,0) =1 = O[(z;y+ g(yi—)p+)/oul, » =0
= (1/o)¢l(yi — 2y — g(yi—)p—)/oul, ¥ >0

To implement the conditional MLE, we need to specify a density in Assumption 3. Again, it is
convenient for this to be normal, as in equation (15). For the Tobit case, we might replace y;
with a more general vector of functions, r;y = r(y,0), which allows ¢; to have a fairly flexible
conditional mean. Interactions between elements of r;y and z; may be warranted. We can use an
argument very similar to the probit case to show that the log-likelihood has a form that can be
maximized by standard random effects Tobit software, where the explanatory variables at time
t are X = (Zir, 8 1—1,Tio» 2;) and g;,—1 = g(yi,—1). In particular, the latent variable model can
be written as yj =z;y+ gi—10+ ¢ + uy = Z; ¥+ gi—10 + g + oy + Z;y + u;;, Where uj
given (z;, yis—1, - - -, Yio, @;) has a Normal (0, 03) distribution. Again, we estimate af rather than
o2, but o2 is exactly what appears in the average partial effects.
Denote E(y; |w; = w;, c; =c) as

m(wiB+ ¢, ;) = PLW,B+ ¢)/ou] (Wi + ¢) + oupl(W, B + ¢)/0u] (28)
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where w, = (z;, g&-1). As in the probit case, for estimating the APEs it is useful to substitute
for ¢;:

Elm(w,B + i, 0,)] = Elm(W:f + o + rioer + zi@z + a;, 7)1
= E{E[m(W:B + a0 + rioe1 + ziay + ai, 07)|ri0, i1} (29)
where the first expectation is with respect to the distribution of ¢; and the second expectation is with
respect to the distribution of (y;, Z;, a;). The second equality follows from iterated expectations.
Since @; and (rjo,z;) are independent, and a; ~ Normal(0, af), the conditional expectation in
equation (29) is obtained by integrating m(w;B + o + rioe; + ;2 + a;, 03) over a; with respect
to the Normal (0, 02) distribution. Since m(w,B+ a + rioa; + z;ay + a;, 02) is obtained by

integrating max (0, w; B + ag + rjoe; + z;a; + a; + u; ) with respect to u;; over the Normal (0, 03)
distribution, it is easily seen that the conditional expectation in equation (29) is

m(w, B+ ag + rio@ + z;a, 0> + 07) (30)

A consistent estimator of the expected value of expression (30) is simply

N
N7 “m(w B+ &o + rio@) + 6, 67 + 67) (31)
i=1

Other corner solution responses can be handled similarly. For example, suppose y;, is a fractional
variable that can take on the values zero and one with positive probability. Then we can define y;,
as a doubly-censored version of the latent variable y} introduced earlier. Standard software that
estimates two-limit random effects Tobit models is readily applied.

5.3. Dynamic Poisson Model

As in Section 2, we assume that y; given (y;,—1, ..., Yo, Zi, ¢;) has a Poisson distribution with
mean given in equation (4). For Assumption 3, write

¢; = a; exp(eg + rioe; + z;a;) (32)

where r;y is a vector of functions of y;p. Assume that a; is independent of (yj, z;) and a; ~
Gamma(n, ), which is analogous to Hausman et al. (1984). Then, for each #, y; |(yi -1, -- -, Yio,
z;, a;) has a Poisson distribution with mean

a; exp(z;;8 + g; .—1p + o + oot + 2;02) (33)

where r;; denotes a vector function of y;y. Call the mean in expression (33) a;m;,. Then the density
of (yi1, ..., yir) given (z;, yio, a;) is obtained, as usual, by the product rule:

T T T
H exp(—aimy )(aim; ) [ y,! = (H ml};l/yt!> eXp <_ai Z mit) af’ (34)
=1 =1 =1

where n = y; + - - - + yr. When we integrate out a; with respect to the Gamma (7, ) density, we
obtain a density that has the usual random effects Poisson form with Gamma (7, n) heterogeneity,
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as in Hausman er al. [1984, equation (2.3)]. The difference is that the explanatory variables
are (z;, g1, Lio, Z;). This makes estimation especially convenient in software packages that
estimate random effects Poisson models with Gamma heterogeneity. The Chamberlain (1992) and
Wooldridge (1997) moment estimators are compatible with this MLE analysis in the sense that
the moment estimators only use the conditional mean assumption (4).

6. EMPIRICAL APPLICATION: THE PERSISTENCE OF UNION MEMBERSHIP

Vella and Verbeek (1998) (hereafter, VV) use panel data on working men to estimate the union
wage differential, accounting for unobserved heterogeneity. I use their data to estimate a simple
model of union membership dynamics. Most of the explanatory variables in VV’s data set are
constant over time. One variable that does change over time is marital status (marr; ). A simple
dynamic model of union membership is

P(union;; = llunion;,_, ..., unioniy, marri, ..., marri, c;)

= Oy, + yimarry + punion; .y +¢;), t=1,...,T (35)

where ¢ = 1 corresponds to 1981 and t = T corresponds to 1987. The initial time period is 1980.
The unobserved effect, c;, is assumed to satisfy assumption (15), where z; is the 1 x T vector of
marital status indicators and y;y = union;y. The 7, are unrestricted year intercepts.

Column (1) in Table I contains the maximum likelihood estimates. These were obtained simply
by using the Stata®7.0 ‘xtprobit’ command, where a full set of time dummies (not shown), current
marital status, lagged union status, union membership status in 1980 (uniono) and the marital
status dummy variables for 1981 through 1987 (marr, through marr;) are included as explanatory
variables. Asymptotic standard errors are given in parentheses.

Even after controlling for the unobserved effect using the model in Section 5.1, the coefficient
on the lagged union status variable is very statistically significant. The initial value of union status
is also very important, and implies that there is substantial correlation between the unobserved
heterogeneity and the initial condition. In fact, the coefficient on uniong (1.514) is much larger
than the coefficient on union,_; (0.875).

Getting married is estimated to have a marginally significant effect on belonging to a union, with
a ¢t statistic of about 1.51. The variables marry, ..., marry are included to allow for correlation
between ¢; and marital status in all time periods. There is no clear pattern to the coefficients, and
only marry is statistically different from zero at the 5% level.

In order to explicitly control for some observed heterogeneity, column (2) of Table I includes
the time-constant variables educ and black. While we cannot necessarily identify the causal effects
of education and race on union membership, we can include them in the model for unobserved
heterogeneity in equation (15), which means we just add them as explanatory variables. The coef-
ficient on educ is statistically insignificant, while blacks are significantly more likely to belong to a
union. Interestingly, even after educ and black are included, there is much unobserved heterogene-
ity that cannot be explained by uniong, marry, ..., marrs, educ and black: 6, = 1.129 (t = 11.07).
This means that the unobserved effect a; = ¢; — E(c;|union;o, marr;y, ..., marr;;, educ;, black;)
accounts for about 56% of the unexplained variance of the composite error, a; + u;;, where u;, has
a conditional standard normal distribution.
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Table I. Dependent variable:

J. M. WOOLDRIDGE

union,

Explanatory variable

)]

marr; 0.168 0.169
(0.111) 0.111)

union,_| 0.875 0.886
(0.094) (0.094)

uniong 1.514 1.477
(0.165) (0.171)

marr 0.064 0.055
(0.209) (0.207)

marry —0.071 —0.061
(0.256) (0.246)

marrs —0.129 —0.136
(0.242) (0.242)

marry 0.025 0.070
(0.265) (0.268)

marrs 0.407 0.428
(0.246) (0.244)

marreg 0.109 0.079
(0.263) (0.263)

marrs —0.427 —0.388
(0.211) (0.216)

educ - —0.017
(0.036)

black - 0.535
(0.194)

constant —1.828 —1.712
(0.152) (0.449)

0a 1.129 1.099
(0.102) (0.098)

Log-likelihood value —1,287.48 —1,283.39

Table II. Estimated probability of being in a union, 1987

In union, 1986 Not in union, 1986

Married, 1987
Not married, 1987

0.408
0.370

0.226
0.197

To get at the magnitudes of the state dependence, we estimate the probability of being in a union
in 1987 given that the man is or is not in a union in 1986, broken down also by marital status.
As discussed in Section 5.1, we average out ¢; using equation (27). Specifically, Table II reports

N
N7t Z ®[(—1.828 + 0.0738 + 0.168marr, 4+ 0.875union,_; + & vio + z:&2)/(1 + 1.275)1/2]

i=1

for union,_; =0 or 1 and marr, =0 or 1, where —0.0738 is the coefficient on the 1987 year
dummy and 62 = 1.275. The & ; are from column (1) of Table I.

For a married man belonging to a union in 1986, the estimated probability of belonging to a
union in 1987—averaged across the distribution of ¢;—is 0.408. For a married man not belonging
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to a union in 1986, the estimated probability is 0.226. The difference, 0.182, is an estimate of the
state dependence of union membership. The magnitude for unmarried men, 0.173, is similar.

One way to extend the model is to allow for the interaction term marr;, - union;,_; in the
structural model. It is then natural to add the interactions between marr;., r = 1, ..., T and union
in the distribution D(c;|union;y, marr;y, ..., marr;7). When added to the model in column (2) of
Table I, the coefficient on married;, - union; | has a t statistic of only 0.84 and the p-value for
exclusion of all eight interaction terms is 0.981.

7. CONCLUSIONS

I have suggested a general method for handling the initial conditions problem in a dynamic,
nonlinear, unobserved effects panel data model. The key insight is that, in general nonlinear
models, we can use a joint density conditional on the strictly exogenous variables and the initial
condition. In an application of an early version of this paper, Erdem and Sun (2001) applied the
approach to choice dynamics for five different products. The authors find strong evidence of state
dependence in product choice.

The conditional density in Assumption 3 can be modelled flexibly, but perhaps the most
important contribution of the paper is that it shows how to obtain simple estimators in dynamic
probit, Tobit and Poisson unobserved effects models for specific choices of the auxiliary density.
Plus, we have shown how to obtain simple estimates of the partial effects averaged across the
distribution of the unobserved heterogeneity; hopefully, APEs will be routinely reported in future
empirical work.

Many issues can be studied in future research. For one, it is important to know the consequences
of misspecifying the density in Assumption 3. Intuitively, as the size of the cross-section increases,
we can make /h(c|yo, z; ) more and more flexible. Unless nonlinearities in the model are caused
by true data censoring, any study to evaluate the impact of various choices of A(c|yy, z; §) should
focus on estimates of APEs, not just on 6,. As is well known, it often makes no sense to compare
parameter estimates across different nonlinear models.

The approach proposed in Section 3 can be modified when some of the explanatory variables fail
the strict exogeneity requirement. Wooldridge (2000) lays out a framework for handling models
with feedback, but specific implementation issues have yet to be explored.

ACKNOWLEDGEMENTS

I would like to thank two anonymous referees, the participants at the Michigan, Michigan State,
North Carolina State and Penn State econometrics workshops, and the attendees of the ESRC
Study Group Econometrics Conference in Bristol, UK, July 2000, for many helpful comments
and suggestions. I am especially grateful to Brandon Bartels for catching two mistakes in coding
some of the variables in my original analysis. This is a revised version of ‘The initial conditions
problem in dynamic, nonlinear panel data models with unobserved heterogeneity’, University of
Bristol Department of Economics Working Paper No. 00/496.

REFERENCES

Ahn SC, Schmidt P. 1995. Efficient estimation of models for dynamic panel data. Journal of Econometrics
68: 5-27.

Copyright © 2005 John Wiley & Sons, Ltd. J. Appl. Econ. 20: 39—54 (2005)



54 J. M. WOOLDRIDGE

Anderson TW, Hsiao C. 1982. Formulation and estimation of dynamic models using panel data. Journal of
Econometrics 18: 67-82.

Arellano M, Bond SR. 1991. Some tests of specification for panel data: Monte Carlo evidence and an
application to employment equations. Review of Economic Studies 58: 277-297.

Arellano M, Bover O. 1995. Another look at the instrumental variables estimation of error-component models.
Journal of Econometrics 68: 29-51.

Arellano M, Carrasco R. 2003. Binary choice panel data models with predetermined variables. Journal of
Econometrics 115: 125-157.

Bhargava A, Sargan JD. 1983. Estimating dynamic random effects models from panel data covering short
time periods. Econometrica 51: 1635-1659.

Blundell R, Bond S. 1998. Initial conditions and moment restrictions in dynamic panel data models. Journal
of Econometrics 87: 115-143.

Blundell RW, Smith RJ. 1991. Initial conditions and efficient estimation in dynamic panel data models.
Annales d’Economie et de Statistique 20/21: 109—123.

Chamberlain G. 1980. Analysis of covariance with qualitative data. Review of Economic Studies 47: 225-238.

Chamberlain G. 1992. Comment: sequential moment restrictions in panel data. Journal of Business and
Economic Statistics 10: 20-26.

Erdem T, Sun B. 2001. Testing for choice dynamics in panel data. Journal of Business and Economic Statistics
19: 142-152.

Geweke J, Keane M. 1999. Mixture of normals probit models. In Analysis of Panels and Limited Dependent
Variable Models, Hsaio C, Lahiri K, Lee L-F, Pesaran MH (eds). Cambridge University Press: Cambridge;
49-78.

Hahn J. 1999. How informative is the initial condition in the dynamic panel data model with fixed effects?
Journal of Econometrics 93: 309-326.

Hausman JA, Hall BH, Griliches Z. 1984. Econometric models for count data with an application to the
patents—R&D relationship. Econometrica 52: 909-938.

Heckman JJ. 1981. The incidental parameters problem and the problem of initial conditions in estimating a
discrete time—discrete data stochastic process. In Structural Analysis of Discrete Data with Econometric
Applications, Manski CF, McFadden D (eds). MIT Press: Cambridge, MA; 179-195.

Honoré BE. 1993. Orthogonality conditions for Tobit models with fixed effects and lagged dependent
variables. Journal of Econometrics 59: 35-61.

Honoré BE, Kyriazidou E. 2000. Panel data discrete choice models with lagged dependent variables.
Econometrica 68: 839—-874.

Hsiao C. 1986. Analysis of Panel Data. Cambridge University Press: Cambridge.

Vella F, Verbeek M. 1998. Whose wages do unions raise? A dynamic model of unionism and wage rate
determination for young men. Journal of Applied Econometrics T: 413—421.

Wooldridge JM. 1997. Multiplicative panel data models without the strict exogeneity assumption. Economet-
ric Theory 13: 667-678.

Wooldridge JM. 2000. A framework for estimating dynamic, unobserved effects panel data models with
possible feedback to future explanatory variables. Economics Letters 68: 245-250.

Wooldridge JM. 2002. Econometric Analysis of Cross Section and Panel Data. MIT Press: Cambridge, MA.

Copyright © 2005 John Wiley & Sons, Ltd. J. Appl. Econ. 20: 39—54 (2005)



