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SUMMARY
In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of
estimators and test statistics in the linear model with multiple structural changes. In this companion paper,
we consider practical issues for the empirical applications of the procedures. We first address the problem
of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum
of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most
least-squares operations of order O�T2� for any number of breaks. Our method can be applied to both pure
and partial structural change models. Second, we consider the problem of forming confidence intervals for the
break dates under various hypotheses about the structure of the data and the errors across segments. Third,
we address the issue of testing for structural changes under very general conditions on the data and the errors.
Fourth, we address the issue of estimating the number of breaks. Finally, a few empirical applications are
presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS
program. Copyright  2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

Both the statistics and econometrics literature contain a vast amount of work on issues related to
structural change, most of it specifically designed for the case of a single change. The problem
of multiple structural changes has received considerably less but an increasing attention. Related
literature includes Andrews, Lee and Ploberger (1996), Garcia and Perron (1996), Liu, Wu and
Zidek (1997), Pesaran and Timmermann (‘Model instability and choice of observation window’,
unpublished manuscript, 1999), Lumsdaine and Papell (1997), and Morimune and Nakagawa
(1997). Most of these studies are concerned with issues related to hypothesis testing in the context
of multiple changes. Recently, Bai and Perron (1998) considered estimating multiple structural
changes in a linear model estimated by least-squares. They derived the rate of convergence and
the limiting distributions of the estimated break points. The results are obtained under a general
framework of partial structural changes which allows a subset of the parameters not to change
(and, of course, includes a pure structural change model as a special case). They also addressed
the important problem of testing for multiple structural changes: a sup Wald type tests for the
null hypothesis of no change versus an alternative containing an arbitrary number of changes and
a procedure that allows one to test the null hypothesis of, say, � changes, versus the alternative
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2 J. BAI AND P. PERRON

hypothesis of �C 1 changes. The latter is particularly useful in that it allows a specific to general
modelling strategy to consistently determine the appropriate number of changes in the data.

The present study focuses on the empirical implementation of the theoretical results of Bai
and Perron (1998), henceforth referred to as BP. We first address the problem of the estimation
of the break dates and present an efficient algorithm to obtain global minimizers of the sum of
squared residuals based on the principle of dynamic programming which requires at most least-
squares operations of order O�T2� for any number of breaks. Our method can be applied to both
pure and partial structural change models. We also consider the problem of forming confidence
intervals for the break dates under various hypotheses about the structure of the data and errors
across segments. In particular, we may allow the data and errors to have different distributions
across segments or impose a common structure. The issue of testing for structural changes is also
considered under very general conditions on the data and the errors. We discuss how the tests
can be constructed allowing different serial correlation in the errors, different distribution for the
data and the errors across segments or imposing a common structure. We also address the issue of
estimating the number of breaks. To that effect, we discuss methods based on information criteria
and a method based on a sequential testing procedure. Empirical applications are presented to
illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS
program.

The rest of this paper is structured as follows. Section 2 presents the model and the estimator.
Section 3 discusses in detail an algorithm, based on the principle of dynamic programming, that
allows us to efficiently estimate models with multiple structural changes. Section 4 discusses
the construction of confidence intervals for the various parameters, in particular the break dates.
Section 5 discusses tests for multiple structural changes, methods to estimate the number of breaks
and summarizes practical recommendations based on a simulation study presented in Bai and
Perron (‘Multiple structural change models: a simulation analysis’, unpublished manuscript, 2000).
Empirical applications are presented in Section 6. Some conclusions are contained in Section 7.

2. THE MODEL AND ESTIMATORS

We consider the following multiple linear regression with m breaks (mC 1 regimes):

yt D x0
tˇ C z0tυj C ut t D Tj�1 C 1, . . . , Tj �1�

for j D 1, . . . , mC 1. In this model, yt is the observed dependent variable at time t; xt (pð 1)
and zt (qð 1) are vectors of covariates and ˇ and υj �j D 1, . . . , m C 1� are the corresponding
vectors of coefficients; ut is the disturbance at time t. The indices �T1, . . . , Tm�, or the break
points, are explicitly treated as unknown (we use the convention that T0 D 0 and TmC1 D T). The
purpose is to estimate the unknown regression coefficients together with the break points when
T observations on �yt, xt, zt� are available. This is a partial structural change model since the
parameter vector ˇ is not subject to shifts and is estimated using the entire sample. When p D 0,
we obtain a pure structural change model where all the coefficients are subject to change. The
variance of ut needs not be constant. Indeed, breaks in variance are permitted provided they occur
at the same dates as the breaks in the parameters of the regression.1

1 The existence of breaks in the variance could be exploited to increase the precision of the break date estimators. We,
however, do not pursue this avenue and instead treat the variance as a nuisance parameter and focus on breaks in the
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MULTIPLE STRUCTURAL CHANGE MODELS 3

The multiple linear regression system (1) may be expressed in matrix form as

Y D Xˇ C ZυCU

where Y D �y1, . . . , yT�0, X D �x1, . . . , xT�0, U D �u1, . . . , uT�0, υ D �υ0
1, υ

0
2, . . . , υ

0
mC1�

0, and Z is
the matrix which diagonally partitions Z at �T1, . . . , Tm�, i.e. Z D diag�Z1, . . . , ZmC1� with
Zi D �zTi�1C1, . . . , zTi�

0. We denote the true value of a parameter with a 0 superscript. In particular,
υ0 D �υ00

1 , . . . , υ
00
mC1�

0 and �T0
1, . . . , T

0
m� are used to denote, respectively, the true values of the

parameters υ and the true break points. The matrix Z
0

is the one which diagonally partitions Z at
�T0

1, . . . , T
0
m�. Hence, the data-generating process is assumed to be

Y D Xˇ0 C Z
0
υ0 CU �2�

The method of estimation considered is that based on the least-squares principle. For each
m-partition �T1, . . . , Tm�, the associated least-squares estimates of ˇ and υj are obtained by
minimizing the sum of squared residuals

�Y� Xˇ � Zυ�0�Y� Xˇ � Zυ� D
mC1∑
iD1

Ti∑
tDTi�1C1

[yt � x0
tˇ � z0tυi]

2

Let Ǒ �fTjg� and Oυ�fTjg� denote the estimates based on the given m-partition �T1, . . . , Tm�
denoted fTjg. Substituting these in the objective function and denoting the resulting sum of
squared residuals as ST�T1, . . . , Tm�, the estimated break points � OT1, . . . , OTm� are such that
� OT1, . . . , OTm� D argminT1,...,TmST�T1, . . . , Tm�, where the minimization is taken over all partitions
�T1, . . . , Tm� such that Ti � Ti�1 ½ q.2 Thus the break-point estimators are global minimizers of
the objective function. The regression parameter estimates are the estimates associated with the
m-partition f OTjg, i.e. Ǒ D Ǒ �f OTjg�, Oυ D Oυ�f OTjg�. Since, the break points are discrete parameters
and can only take a finite number of values, they can be estimated by a grid search. This method
becomes rapidly computationally excessive when m > 2. Fortunately, there exists a very efficient
method which we now discuss.

3. METHOD TO COMPUTE GLOBAL MINIMIZERS

We now consider an algorithm based on the principle of dynamic programming that allows the
computation of estimates of the break points as global minimizers of the sum of squared residuals.
This algorithm uses at most least-squares operations of order O�T2� for any number of structural
changes m, unlike a standard grid search procedure which would require least squares operations
of order O�Tm�. The basis of the method, for specialized cases, is not new and was considered by
Guthery (1974), Bellman and Roth (1969) and Fisher (1958). Nevertheless, it seems to have been
forgotten, at least in the econometrics literature, and a thorough description appears useful. The

conditional mean of yt. Hence, while permitting breaks in the variance, we do not make use of it other than to estimate
the variance segment by segment when such changes are permitted.
2 It is possible to relax the constraint that a segment be at least of length q by making use of generalized inverses. We,
however, have not considered this extension in the algorithm presented in Section 3.
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4 J. BAI AND P. PERRON

original method works only for pure structural change models; we propose a scheme that allows
estimating more general partial structural change models.

3.1. The Triangular Matrix of Sums of Squared Residuals

The basic idea of the approach becomes fairly intuitive once it is realized that, with a sample
of size T, the total number of possible segments is at most T�TC 1�/2 and is therefore of order
O�T2�. This is presented in Figure 1 for the special case with T D 25 and m D 2 where the vertical

1 2 3 4 5 6 7 8 9 10 11 12

Terminal date

13 14 15 16 17 18 19 20 21 22 23 24 25

1 xa xa xa xa • • • • • • • • • • • xb xb xb xb xb xb xb xb xb xb

2 xa xa xa xa xc xc xc xc xc xc xc xc xc xc xb xb xb xb xb xb xb xb xb xb

3 xa xa xa xa xc xc xc xc xc xc xc xc xc xb xb xb xb xb xb xb xb xb xb

4 xa xa xa xa xc xc xc xc xc xc xc xc xb xb xb xb xb xb xb xb xb xb

5 xa xa xa xa xc xc xc xc xc xc xc xb xb xb xb xb xb xb xb xb xb

6 xa xa xa xa • • • • • • • • • • • xb xb xb xb xb

7 xa xa xa xa • • • • • • • • • • xb xb xb xb xb

S 8 xa xa xa xa • • • • • • • • • xb xb xb xb xb

t 9 xa xa xa xa • • • • • • • • xb xb xb xb xb

a 10 xa xa xa xa • • • • • • • xb xb xb xb xb

r 11 xa xa xa xa • • • • • • • • • • •
t 12 xa xa xa xa • • • • • • • • • •
i 13 xa xa xa xa • • • • • • • • •
n 14 xa xa xa xa • • • • • • • •
g 15 xa xa xa xa • • • • • • •

16 xa xa xa xa • • • • • •
D 17 xa xa xa xa • • • • •
a 18 xa xa xa xa • • • •
t 19 xa xa xa xa • • •
e 20 xa xa xa xa • •

21 xa xa xa xa •
22 xa xa xa xa

23 xa xa xa

24 xa xa

25 xa

Notes:

The vertical number indicates the initial date of a segment while the horizontal number indicates the terminal date. For
example, the entry (4,10) indicates a segment that starts at date 4 and ends at date 10, hence having 7 observations.

xa indicates a segment not considered since it must be at least of length 5.

xb indicates a segment not considered since otherwise there would be no place for 3 segments of length 5.

xc indicates a segment not considered since otherwise there would be no place for a segment of length 5 prior to it.

A • indicates an admissible segment.

Figure 1. Example of the triangular matrix of sums of squared residuals with T D 25, h D 5 and m D 2
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MULTIPLE STRUCTURAL CHANGE MODELS 5

axis represents the initial date of a segment and the horizontal axis the ending date. Each entry
represents an estimated sum of squared residuals corresponding to the associated segment. The
global sum of squared residuals for any m-partition �T1, . . . , Tm� and for any value of m must
necessarily be a particular linear combination of these T�TC 1�/2 sums of squared residuals. The
estimates of the break dates, the m-partition � OT1, . . . , OTm�, correspond to this linear combination
with a minimal value. The dynamic programming algorithm can be seen as an efficient way to
compare possible combinations (corresponding to different m-partitions) to achieve a minimum
global sum of squared residuals.

In practice, less than T�TC 1�/2 segments are permissible. First, some minimum distance,
h, between each break may be imposed, as is done in the construction of the tests discussed
in Section 5 (we suppose without loss of generality that h ½ q�. This implies a reduction in
the number of segments to be considered of �h � 1�T� �h � 2��h � 1�/2 (see Figure 1). Other
reductions are possible. The largest segment must be short enough to allow m other segments
before or after. For example, when the segment starts at a date between 1 and h, the maximal
length of this segment is T� hm when m breaks are allowed. This allows a further reduction
in the total number of segments considered of h2m�m C 1�/2. Finally, a segment cannot start at
dates 2 to h, since otherwise no segment of minimal length h could be inserted at the beginning
of the sample. This allows a further reduction of T�h � 1�� mh�h � 1�� �h � 1�2 � h�h � 1�/2
segments to be considered. We discuss below how this triangular matrix of sums of squared
residuals can be constructed and used to obtain global minimizers for both cases of pure and
partial structural change models.

3.2. The Case of a Pure Structural Change Model

We first consider the case of a pure structural change model with the regression given by:

Y D ZυCU �3�

In such a case, the computation of the estimates Oυ, Out and ST�T1, . . . , Tm� can be done applying
OLS segment by segment without constraints among them. The computation of the triangular
matrix of sums of squared residuals can be achieved using standard updating formulae to calculate
recursive residuals. Indeed, all the relevant information can be calculated from T� hm C 1 sets of
recursive residuals. Let v�i, j� be the recursive residual at time j obtained using a sample that starts
at date i, and let SSR�i, j� be the sum of squared residuals obtained by applying least-squares to
a segment that starts at date i and ends at date j. We have the following recursive relation
(e.g. Brown, Durbin and Evans, 1975): SSR�i, j� D SSR�i, j� 1�C v�i, j�2. All the relevant
information is contained in the values SSR�i, j� for the relevant combinations �i, j�. Note that
the number of matrix inversions needed is simply of order O�T�.

3.3. The Dynamic Programming Algorithm

Once the sums of squared residuals of the relevant segments have been computed and stored,
a dynamic programming approach can be used to evaluate which partition achieves a global
minimization of the overall sum of squared residuals. This method essentially proceeds via a
sequential examination of optimal one-break (or two segments) partitions. Let SSR�fTr,ng� be the

Copyright  2002 John Wiley & Sons, Ltd. J. Appl. Econ. 18: 1–22 (2003)



6 J. BAI AND P. PERRON

sum of squared residuals associated with the optimal partition containing r breaks using the first
n observations. The optimal partition solves the following recursive problem:

SSR�fTm,Tg� D min
mh�j�T�h

[SSR�fTm�1,jg�C SSR�jC 1, T�] �4�

The procedure starts by evaluating the optimal one-break partition for all sub-samples that allow
a possible break ranging from observations h to T� mh. Hence, the first step is to store a set
of T� �m C 1�h C 1 optimal one-break partitions along with their associated sum of squared
residuals. Each of the optimal partitions correspond to subsamples ending at dates ranging from
2h to T� �m � 1�h.

Consider now the next step which proceeds in a search for optimal partitions with two breaks.
Such partitions have ending dates ranging from 3h to T� �m � 2�h. For each of these possible
ending dates, the procedure looks at which one-break partition (saved earlier) can be inserted
to achieve a minimal sum of squared residuals. The outcome is a set of T� �m C 1�h C 1
optimal two breaks (or three segments) partitions. The method continues sequentially until a
set of T� �m C 1�h C 1 optimal �m � 1� breaks partitions are obtained with ending dates ranging
from �m � 1�h to T� 2h. The final step is to see which of these optimal �m � 1� breaks partitions
yields an overall minimal sum of squared residuals when combined with an additional segment.
The method can therefore be viewed as a sequential updating of T� �m C 1�h C 1 segments into
optimal one, two and up to m� 1 breaks partitions (or into two, three and up to m sub-segments);
the last step simply creating a single optimal m breaks (or m C 1 segments) partition.

It is important to note that, in practice, this method is very fast using samples of the usual sizes.
Indeed, the major computation cost is the construction of the triangular matrix of sums of squared
residuals for all possible segments. The search for the optimal m-partition represents a marginal
addition to the total computing time. This means that it is only marginally longer to obtain global
minimizers with five or ten breaks as it is with two.

3.4. The Case of a Partial Structural Change Model

This dynamic programming method to obtain global minimizers of the sum of squared residuals
cannot be applied directly to the case of a partial structural change model (p > 0). This is because
we cannot concentrate out the parameters ˇ without knowing the appropriate partition, i.e. the
estimate of ˇ associated with a global minimization depends on the optimal partition which we
are trying to obtain. Unlike for the pure structural change model for which we can write the
regression in the form (3), each element of the triangular matrix of sums of squared residuals
depends on the final optimal m-partition that we search.

However, a simple iterative procedure is possible. Let � D �υ, T1, . . . , Tm�, we can write the
sum of squared residuals as a function of the vectors ˇ and �, i.e. SSR�ˇ, ��. As discussed in
Sargan (1964), we can minimize SSR�ˇ, �� in an iterative fashion as follows. First, minimize with
respect to � keeping ˇ fixed and then minimize with respect to ˇ keeping � fixed, and iterate.
Each iteration assures a decrease in the objective function.3

We discuss the details of this method in our context with a slight modification that permits a
very rapid convergence. Note that the first step, minimizing with respect to � keeping ˇ fixed,

3 The convergence properties of this scheme are discussed in Sargan (1964). Of course, convergence to the global minimum
is not guaranteed and a proper choice of the initial value of ˇ might be important to avoid a local minimum.
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MULTIPLE STRUCTURAL CHANGE MODELS 7

amounts to applying the dynamic programming algorithm discussed above with yt � x0
tˇ as the

dependent variable. Since ˇ is fixed this is, indeed, a step involving a pure structural change model.
Let �Ł D �υŁ, fTŁg� be the associated estimate from this first stage (with fTŁg D �TŁ

1, . . . , T
Ł
m�).

The application of Sargan’s method suggest that the second step be a simple linear regression with
yt � z0tυ

Ł
j being the dependent variable for t in regime j �j D 1, . . . , m C 1�, the regimes being

defined by the partition fTŁg.
Important efficiency gains can be obtained making a slight modification to the second step. The

idea is to only keep fTŁg fixed and to maximize again with respect to υ and ˇ simultaneously.
Hence, υ is updated at each of the two steps. The reason why this leads to important efficiency
gains can be explained as follows. In general, the values fTŁg obtained at the first iteration will
be quite close to the values f OTg that correspond to the global minimum (unless the initial value
of ˇ is very far from its true value ˇ0). Intuitively this is so because a misspecification in the
initial value of ˇ has little effect on the estimates fTŁg, since the latter depend mostly on the
changes in the coefficients υ (associated with the zt variables) across regimes. Consider a second
step which applies the OLS regression Y D Xˇ C Z

Ł
υCU, with Z

Ł
, the diagonal partition of Z

at the m-partition fTŁg D �TŁ
1, . . . , T

Ł
m�. If the values fTŁg are equal to f OTg, corresponding to the

global minimum, the estimates of ˇ and υ from this second step are then those corresponding to
the global minimum. Experiments with real and simulated data showed that, in the majority of
cases, a single iteration is sufficient. In a few cases two are required but it was difficult to find
examples where three were needed.

To highlight the contrast between the two methods, consider what happens if υ is not re-updated
in the second step. This step becomes a simple OLS regression of the form Y� Z

Ł
υŁ D Xˇ CU.

Note that even if fTŁg is equal to f OTg, corresponding to the global minimum, the estimate of ˇ
will not necessarily be close to Ǒ (the value at the global minimum) unless, of course, υŁ is already
close to Oυ at the first iteration (which can only happen with a small probability). Hence, the need
for additional iterations; and experiments on real an simulated data have shown that the number
of iterations necessary can be high, even in simple models.

The convergence criterion adopted is that the change in the objective function ST�T1, . . . , Tm� be
smaller than some arbitrary ε. Using the iterative method suggested, it is possible to specify ε D 0
because of the discrete nature of the variables �T1, . . . , Tm�. Indeed, in most of the experiments
performed, the minimum was attained after the first iteration and the second one only verified that
there was effectively no change in the objective function.

3.5. The Choice of the Initial Value for b

The efficiency of the method proposed above to achieve a global minimum (by opposition to a
local minimum) depends on an appropriate choice of the initial value of the vector ˇ to start the
iteration. We suggest the following procedure. First, apply the dynamic programming algorithm
treating all coefficients as subject to change, i.e. treat the model as one of pure structural change.
To be precise, write this pure structural change model as

yt D x0
tυ1,j C z0tυ2,j C ut t D Tj�1 C 1, . . . , Tj

for j D 1, . . . , m C 1. The application of the dynamic programming algorithm to this model gives
estimates �υa1j, υ

a
2j; j D 1, . . . , m C 1� and �Ta1, . . . , T

a
m�. To obtain an initial value of the vector ˇ,

we only need to use the OLS regression Y� Z
a
υa2 D Xˇ CU, where Z

a
is the diagonal partition

Copyright  2002 John Wiley & Sons, Ltd. J. Appl. Econ. 18: 1–22 (2003)



8 J. BAI AND P. PERRON

of Z at the m-partition �Ta1, . . . , T
a
m� and υa2 is the estimate of υ2. The estimate so obtained, say

ˇa, is used to initialize the iteration procedure.
Using this method to choose the initial value of ˇ is justified on the grounds that the estimates

�aj D Taj/T of the break fractions �0
j D T0

j/T are convergent at rate T even when some coefficients
do not change across regimes. All that is needed is that at least one coefficient changes at every
break date. Hence, the estimate ˇa obtained is asymptotically equivalent to the estimate Ǒ associated
with the global minimum. This permits reaching the global minimum in very few iterations and
greatly reduces the risk of reaching a local minimum. Indeed, this later problem did not occur in
any of the experiments that we tried.

It may be the case that using this method to initialize the vector ˇ is difficult to implement in
practice; for example, when the dimension p of the vector ˇ and/or the number m of changes are
large. In such cases, one can always use some fixed initial values. Here, however, the problem
of convergence towards a local minimum becomes more important and care should be used by
applying some sensitivity analyses.

3.6. Extension to Threshold Models

The algorithm can be adapted to estimate threshold models of the form:

yt D x0
tˇ C z0tυj C ut �j�1 < vt � �j �5�

for j D 1, . . . , m C 1 with the convention that �0 D �1 and �mC1 D C1. Again, yt is the observed
dependent variable at time t; xt (pð 1) and zt (qð 1) are vectors of covariates and ˇ and
υj �j D 1, . . . , m C 1� are the corresponding vectors of coefficients; ut is the disturbance at time t.
Here, the functional form of the regression depends on the value of some observable variable vt.
This variable can be an element of the vectors xt or zt but need not, and it should be predetermined
relative to ut (e.g. a lagged value of the dependent variable is permitted). There are m threshold
points ��1, . . . , �m� which are unknown and, hence, m C 1 regimes. The purpose is to estimate
the unknown regression coefficients together with the threshold points when T observations on
�yt, xt, zt� are available. This is a partial threshold model in the sense that ˇ is not subject to shifts
and is effectively estimated using the entire sample. When p D 0, we obtain a pure threshold
model with all coefficients subject to change.

To describe the estimation method, let v0 D �v1, . . . , vT� and vŁ0 D �vt1 , . . . , vtT � be the sorted
version of v0 such that vt1 � vt2 � . . . � vtT . The indices �t1, . . . , tT� are a permutation of the time
indices �1, . . . , T�. Now, for i D 1, . . . , m, let Ti be the time index such that vtj � �i for all j such
that j � Ti and vtj > �i for all j such that j > Ti. The m-partition �T1, . . . , Tm� is the partition
that corresponds to the time indices of the sorted vector vŁ0 when the variables vtj reach each
of the m thresholds. We can write model (5) using all variables sorted according to the partition
�T1, . . . , Tm�. Then, we have, for j D 1, . . . , T and i D 1, . . . , m C 1:

ytj D x0
tjˇ C z0tjυi C utj j D Ti�1, . . . , Ti �6�

(using T0 D 0 and TmC1 D T). This model is in the form of a partial structural change model
that we have considered. Note that this change in the time scale maintains the structure of the
model even with lagged dependent variables (see Tsay, 1998). One can obtain consistent estimates
of the parameters �T1, . . . , Tm� using the dynamic programming algorithm. Let the estimate of

Copyright  2002 John Wiley & Sons, Ltd. J. Appl. Econ. 18: 1–22 (2003)



MULTIPLE STRUCTURAL CHANGE MODELS 9

the partition be denoted by � OT1, . . . , OTm�; the estimates of the thresholds are then recovered as
O�j D vtr with r D OTj for j D 1, . . . , m. One can then recover the estimates of ˇ and υi from (5)
by OLS conditioning on the threshold values.

4. CONSTRUCTING CONFIDENCE INTERVALS

A central result derived in BP concerns the convergence of the break fractions O�i D OTi/T and the
rate of convergence. The results obtained show not only that O�i converges to its true value �0

i but
that it does so at the fast rate T, i.e. T� O�i � �0

i � D Op�1� for all i. It is important, however, to
note that this rate T convergence pertains to the estimated break fractions O�i and not to the break
dates OTi themselves. For the latter, the result shows that with a probability arbitrarily close to 1,
the distance between OTi and T0

i is, in large samples, bounded by a constant independent of the
sample size.

This convergence result is obtained under a very general set of assumptions allowing a wide
variety of models. It, however, precludes integrated variables (with an autoregressive unit root)
but permits trending regressors. The assumptions concerning the nature of the errors in relation
to the regressors fxt, ztg are of two kinds. First, when no lagged dependent variable is allowed
in fxt, ztg, the conditions on the residuals are quite general and allow substantial correlation and
heteroscedasticity. The second case allows lagged dependent variables as regressors but then, of
course, no serial correlation is permitted in the errors futg. In both cases, the assumptions are
general enough to allow different distributions for both the regressors and the errors in each
segment.

The possibility of the two cases described above is potentially quite useful in dynamic
models when the parameters associated with the lagged dependent variables are not subject
to structural change. In this case, the investigator can take these dynamic effects into account
either in a direct parametric fashion (e.g. introducing lagged dependent variables so as to have
uncorrelated residuals) or using an indirect non-parametric approach (e.g. leaving the dynamics in
the disturbances and applying a non-parametric correction for proper asymptotic inference). This
trade-off can be useful to distinguish gradual from sudden changes the same way a distinction is
made between innovational and additive outliers. Consider, for example, the case of a change in
mean for a correlated series. When specifying zt D f1g and xt D f;g, all the dynamics is contained
in the error term and does not affect the impact of the change in mean on the level of the series.
The change is, hence, abrupt. However, when specifying zt D f1g and xt D flags of ytg, a change
in the coefficient associated with the constant zt is related to a change in the level of yt that varies
for the periods following the break. This change depends on the autoregressive dynamics and takes
effect gradually.

4.1. Confidence Intervals for the Parameters b and d

The fact that the quantities O�i converge at the fast rate of T is enough to guarantee that the
estimation of the break dates has no effect on the limiting distribution of the other parameters of
the model. This permits us to recover, for these estimates, the standard

p
T asymptotic normality.

More precisely, let O� D � Ǒ , Oυ� and �0 D �ˇ0, υ0�, then
p
T�O� � �0�

d!N�0, V�1V�1� with V D
plim T�1W

00
W

0
,  D plim T�1W

00

W

0
, 
 D E�UU0�, and where W

0 D diag�W0
1, . . . ,W

0
mC1�
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10 J. BAI AND P. PERRON

is the diagonal partition, at �T0
1, . . . , T

0
m�, of W D �w1, . . . , wT� with wt D �x0

t, z
0
t�. Note that when

the errors are serially uncorrelated and homoscedastic we have  D �2V and the asymptotic
covariance matrix reduces to �2V�1, which can be consistently estimated using an estimate of
�2. When serial correlation and/or heteroscedasticity is present, a consistent estimate of  can
be constructed along the lines of Andrews (1991). In all cases where covariance matrix robust
to heteroscedasticity and serial correlation are needed, we use Andrews’s (1991) data dependent
method with the Quadratic Spectral kernel and an AR(1) approximation to select the bandwidth
(henceforth, referred to as the HAC estimator). We also allow in the program using pre-whitening as
suggested in Andrews and Monahan (1992). Note that the correction for possible serial correlation
can be made allowing the distributions of the regressors and errors to differ.

4.2. Confidence Intervals for the Break Dates

To get an asymptotic distribution for the break dates, the strategy considered is to adopt an
asymptotic framework where the magnitudes of the shifts converge to zero as the sample size
increases. The resulting limiting distribution is then independent of the specific distribution of the
pair fzt, utg. To describe the relevant distributional result, we need to define some notations. For

i D 1, . . . , m, and T0
i D T0

i � T0
i�1, let i D υ0

iC1 � υ0
i , Qi D p lim�T0

i �
�1 ∑T0

i

tDT0
i�1C1

E�ztz0t�,

and 
i D p lim�T0
i �

�1 ∑T0
i

rDT0
i�1C1

∑T0
i

tDT0
i�1C1

E�zrz0turut�. In the case where the data are non-
trending, we have, under various assumptions stated in BP, the following limiting distribution
of the break dates:

�0
iQii�2

�0
i
ii�

� OTi � T0
i � ) arg max sV

�i��s� �i D 1, . . . , m� �7�

where V�i��s� D W�i�
1 ��s�� jsj/2, if s � 0, V�i��s� D p


i��i,2/�i,1�W
�i�
2 �s�� 
ijsj/2, if s > 0, and


i D 0
iQiC1i/0

iQii, �2
i,1 D 0

i
ii/0
iQii, �2

i,2 D 0
i
iC1i/0

iQiC1i. Also, W�i�
1 �s� and

W�i�
2 �s� are independent standard Weiner processes defined on [0,1�, starting at the origin when

s D 0. These processes are also independent across i. The cumulative distribution function of arg
maxsV�i��s� is derived in Bai (1997a) and all that is needed to compute the relevant critical values
are estimates of i, Qi, and 
i. These are given by Oi D OυiC1 � Oυi, OQi D � OTi��1 ∑ OTi

tD OTi�1C1
ztz0t,

and an estimate of 
i can be constructed using a HAC estimator applied to the vector fzt Outg and
using data over segment i only.

In practice, one may want to impose some constraints related to the distribution of the errors
and regressors across segments. We then have the following cases:

ž The regressors zt are identically distributed across segments. Then Qi D QiC1 D Q which can
be estimated by OQ D T�1 ∑T

tD1 ztz
0
t. In this case, the limiting result states that [� O0

i
OQ Oi�2/

� O0
i
O
i Oi�]� OTi � T0

i � ) arg maxs V�i��s�, with 
i D 1.
ž The errors are identically distributed across segments. Then 
i D 
iC1 D 
 which can be

estimated using a HAC estimator applied to fzt Outg using data over the whole sample.
ž The errors and the data are identically distributed across segments. Here, we have 
i D

1, and �i,1 D �i,2 and the limiting distribution reduces to [� O0
i
OQ Oi�2/� O0

i
O
 Oi�]� OTi � T0

i � )
arg maxsfW�i��s�� jsj/2g, which has a density function symmetric about the origin. Here, W�i��s�
denotes a two-sided Brownian motion defined on <.
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MULTIPLE STRUCTURAL CHANGE MODELS 11

ž The errors are serially uncorrelated. In this case 
i D �2
i Qi and �2

i,1 D �2
i,2 D �2

i which can be

estimated using O�2
i D � OTi��1 ∑ OTi

tD OTi�1C1
Ou2
t . The confidence intervals can then be constructed

from the approximation

� O0
i
OQi Oi�

O�2
i

� OTi � T0
i � ) arg maxsV

�i��s� �8�

ž The errors are serially uncorrelated and the regressors are identically distributed across segments.
Here �2

i,1 D �2
i,2 D �2

i and 
i D 1. The confidence intervals can then be constructed from the
approximation

� O0
i
OQ Oi�

O�2
i

� OTi � T0
i � ) arg maxsfW�i��s�� jsj/2g �9�

ž The errors are serially uncorrelated and identically distributed across segments. The approxima-
tion is the same as (8) with O�2 D T�1 ∑T

tD1 Ou2
t instead of O�2

i .
ž The errors are serially uncorrelated and both the data and the errors are identically distributed

across segments. The approximation is the same as (9) with O�2 instead of O�2
i .

All the cases discussed above are allowed as options in the accompanying computer program.
Since the break dates are integer valued, we consider confidence intervals that are likewise integer-
valued by using the highest smaller integer for the lower bound and the smallest higher integer
for the upper bound.

4.3. The Case with Trending Regressors

Simple modifications can be applied to deal with the case of trending regressors. Suppose that we
have regressor zt of the form zt D [g1�t/T�, . . . , gq�t/T�], with gi�t/T� having bounded derivatives
on [0,1]. For example, in the case of a polynomial trend function, gi�t/T� D �t/T�i. Then, (see
Bai, 1997a)

O0
ig� O�i�g� O�i�0 Oi

 i
)

{
W�i�

1 ��s�� jsj/2 if s � 0p
 iC1/ iW

�i�
2 �s�� jsj/2 if s > 0

where g� O�� D [g1� OTi/T�, . . . , gq� OTi/T�] and  i D p lim�T0
i �

�1 ∑T0
i

rDT0
i�1C1

∑T0
i

tDT0
i�1C1

E�urut�. If

the errors have the same distribution across segments, we have [ O0
ig� O�i�g� O�i�0 Oi/fu�0�] )

arg maxsfW�i��s�� jsj/2g, where fu�0� is (2� times) the spectral density function of ut at frequency
zero which can be consistently estimated using standard kernel methods. If ut is uncorrelated, fu�0�
is replaced by �2 D p limT�1 ∑T

tD1 E�u
2
t � estimated by O�2 D T�1 ∑T

tD1 Ou2
t .

5. TEST STATISTICS FOR MULTIPLE BREAKS

5.1. A Test of No Break versus a Fixed Number of Breaks

We consider the supF type test of no structural break (m D 0) versus m D k breaks. Let
�T1, . . . , Tk� be a partition such that Ti D [T�i] �i D 1, . . . , k�. Let R be the conventional matrix
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12 J. BAI AND P. PERRON

such that �Rυ�0 D �υ0
1 � υ0

2, . . . , υ
0
k � υ0

kC1�. Define

FT��1, . . . , �k ; q� D 1

T

(
T� �k C 1�q � p

kq

)
Oυ0R0�R OV�Oυ�R0��1ROυ �10�

where OV�Oυ� is an estimate of the variance covariance matrix of Oυ that is robust to serial correlation
and heteroscedasticity; i.e. a consistent estimate of

V�Oυ� D p limT�Z
0
MXZ�

�1Z
0
MX
MXZ�Z

0
MXZ�

�1 �11�

Following Andrews (1993) and others, the test is supFT�k; q� D FT� O�1, . . . , O�k; q� where
O�1, . . . , O�k minimize the global sum of squared residuals which is equivalent to maximizing the
F-test assuming spherical errors. This is asymptotically equivalent to, and yet much simpler to
construct than, maximizing the F-test (10) since the estimated break dates are consistent even in
the presence of serial correlation. The asymptotic distribution depends on a trimming parameter
via the imposition of the minimal length h of a segment, namely ε D h/T.

Various versions of the tests can be obtained depending on the assumptions made with respect to
the distribution of the data and the errors across segments. These relate to different specifications
in the construction of the estimate of V�Oυ� given by (11). In the case of a partial structural change
model (p 6D 0), we consider three specifications.

ž Allowing for serial correlation, different distributions for the data across segments and the same
distribution for the errors across segments. The estimate is then OV�Oυ� D �T�1Z

0
MXZ��1 OKT�T�1

Z
0
MXZ��1 where OKT is the HAC estimator of the �m C 1�q vector fzŁt Outg where zŁt are the

elements of the matrix MXZ.
ž Serially uncorrelated errors, different variances of the errors and different distributions of

the data across segments. The estimate is OV�Oυ� D T�Z
0
MXZ��1 O�Z0

MXZ��1, with O D∑mC1
iD1 O�2

i

∑ OTi
tD OTi�1C1

zŁt z
Ł
t

0, O�2
i D � OTi��1 ∑ OTi

tD OTi�1C1
Ou2
t , Z

Ł0 D �zŁ1, . . . , z
Ł
T� with ZŁ D MXZ.

ž Serially uncorrelated errors, different distributions for the data across segments and the same
distribution for the errors across segments. In this case, V�Oυ� D �2�T�1Z

0
MXZ��1 which can be

estimated using O�2 D T�1 ∑T
tD1 Ou2

t .

In the case of a pure structural change model, we consider more possible specifications on how
to estimate the relevant asymptotic covariance matrix. They are the following:

ž No serial correlation, different distributions for the data and identical distribution for the errors
across segments. In this base case, the estimate is OV�Oυ� D O�2�T�1Z

0
Z��1.

ž No serial correlation in the errors, different variances of the errors and different distributions of
the data across segments. In this case, OV�Oυ� D diag� OV�Oυ1�, . . . , OV�OυmC1��, where OV�Oυi� uses only
data from segment i, i.e. OV�Oυi� D O�2

i [� OTi��1 ∑ OTi
tD OTi�1C1

ztz0t]
�1 with O�2

i D � OTi��1 ∑ OTi
tD OTi�1C1

Ou2
t .

These are simply the OLS estimates obtained using data from each segment separately.
ž Serial correlation in the errors, different distributions for the data and the errors across

segments. Here, we make use of the fact that the errors in different segments are asymptotically
independent. Hence, the limiting variance is given by V�Oυ� D diag�V�Oυ1�, . . . , V�OυmC1��, where
V�Oυi� D p lim�Ti��Z0

iZi�
�1Z0

i
iZi�Z
0
iZi�

�1. This can be consistently estimated, segment by
segment, with a HAC estimator of V�Oυi� using only data from segment i.
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MULTIPLE STRUCTURAL CHANGE MODELS 13

ž Serial correlation in the errors, same distribution for the errors across segments. In this case
the limiting covariance matrix is V�Oυ� D p limT�Z

0
Z��1�� �Z0
Z���Z0

Z��1 where (using
the convention that �0 D 0 and �mC1 D 1)  D diag��1 � �0, . . . , �mC1 � �m�. This can be
consistently estimated using O�i D OTi/T and a HAC estimator of Z0
Z based on fzt Outg constructed
using the full sample.

In the construction of the tests we do not consider imposing the restriction that the distribution
of the regressors zt be the same across segments even if they are (except as they enter in the
construction of a HAC estimate involving the pair fzt Outg). This might seem surprising since
imposing a valid restriction should lead to more precise estimate. This is, however, not the
case. Consider the case with no serial correlation in the errors and the same distribution for
the errors across segments. Imposing the restriction that the distribution of the regressors zt
be the same across segments leads to the asymptotic covariance matrix V�Oυ� D �2�� Q��1,
where Q D limT!1 T�1 ∑T

tD1 E�ztz
0
t�. Note that a consistent estimate can be obtained using

OQ D T�1 ∑T
tD1 ztz

0
t, O�2 D T�1 ∑T

tD1 Ou2
t and O constructed using O�i D OTi/T (i D 1, . . . , m�. Suppose

that the z’s are exogenous and the errors have the same variance across segments. Then, for a
given partition �T1, . . . , Tm�, the exact variance of Oυ is V�Oυ� D �2�Z

0
Z/T��1. Using the asymptotic

version may imply an inaccurate approximation especially if small segments are allowed, in which
case the exact moment matrix of the regressors may deviate substantially from its full-sample
analogue.

The same problem occurs in the case with no serial correlation in the errors and different
variances for the residuals across segments. Imposing the restriction that the distribution of
the regressors zt be the same across segments gives the limiting variance V�Oυ� D �Ł � Q��1

where Ł D diag��2
1 ��1 � �0�, . . . , �2

mC1��mC1 � �m�� which can be consistently estimated using
OQ, O�i D OTi/T and O�2

i D � OTi��1 ∑ OTi
tD OTi�1C1

Ou2
t . Again, imposing the constraint that Z0

iZi/� OTi� be

approximated by OQ over all segments may imply a poor approximation in finite samples. We have
found, in these two cases, that imposing a common distribution for the regressors across segments
leads to tests with worse properties even when the data indeed have an invariant distribution. These
distortions becomes less important, however, when the sample size is large and/or the trimming ε
is large.

The relevant asymptotic distribution has been derived in BP and critical values were provided for
a trimming ε D 0.05 and values of k from 1 to 9 and values of q from 1 to 10. As discussed in Bai
and Perron (2000), a trimming as small as 5% of the total sample can lead to tests with substantial
size distortions when allowing different variances of the errors across segments or when serial
correlation is permitted. This is because one is then trying to estimate various quantities using
very few observations; for example, if T D 100 and ε D 0.05, one ends up estimating, for some
segments, quantities like the variance of the residuals using only 5 observations. Similarly, with
serial correlation a HAC estimator would need to be applied to very short samples. The estimates
are then highly imprecise and the tests accordingly show size distortions. When allowing different
variances across segments or serial correlation, a higher value of ε should be used. Hence, the case
with no serial correlation and homogenous errors should be considered the base case in which
the tests can be constructed using an arbitrary small trimming ε. For all other cases, care should
be exercised in the choice of ε and larger values should be considered. For that purpose, we
supplemented the critical values tabulated in BP with similar ones for ε D 0.10, 0.15, 0.20 and
0.25. The results are presented in Bai and Perron (‘Additional critical values for multiple structural
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14 J. BAI AND P. PERRON

changes tests’, unpublished manuscript, 2001). Note that when ε D 0.10 the maximum number
of breaks considered is 8 since allowing 9 breaks impose the estimates to be exactly O�1 D 0.1,
O�2 D 0.2 up to O�9 D 0.9. For similar reasons, the maximum number of breaks allowed is 5 when
ε D 0.15, 3 when ε D 0.20 and 2 when ε D 0.25.

Note that the asymptotic theory for these tests in BP is valid only for the case of non-trending
data. The case with trending data, discussed in Bai (1999), yields different asymptotic distributions.
However, the asymptotic distributions in the two cases are fairly similar, especially in the tail where
critical values are obtained. Hence, one can safely use the same critical values. Using simulations,
we found the size distortions to be minor.

5.2. Double Maximum Tests

Often, an investigator wishes not to pre-specify a particular number of breaks to make inference.
To allow this BP have introduced two tests of the null hypothesis of no structural break
against an unknown number of breaks given some upper bound M. These are called the
double maximum tests. The first is an equal weighted version defined by UD maxFT�M, q� D
max1�m�M FT� O�1, . . . , O�m; q�, where O�j D OTj/T (j D 1, . . . , m� are the estimates of the break
points obtained using the global minimization of the sum of squared residuals. The second test
applies weights to the individuals tests such that the marginal p-values are equal across values of
m and is denoted WD maxFT�M, q�; see BP for details. Critical values were provided for M D 5
and ε D 0.05 in BP. A value M D 5 should be sufficient for most empirical applications. In any
event, the critical values vary little for choices of the upper bound M larger than 5. Bai and Perron
(2001) provide additional critical values for ε D 0.10 (M D 5), 0.15 (M D 5), 0.20 (M D 3) and
0.25 (M D 2).

5.3. A Test of � versus � + 1 Breaks

BP proposed a test for � versus �C 1 breaks, labelled supFT��C 1j��. The method amounts to
the application of ��C 1� tests of the null hypothesis of no structural change versus the alternative
hypothesis of a single change. The test is applied to each segment containing the observations
OTi�1 to OTi �i D 1, . . . , �C 1�. We conclude for a rejection in favour of a model with ��C 1�
breaks if the overall minimal value of the sum of squared residuals (over all segments where an
additional break is included) is sufficiently smaller than the sum of squared residuals from the
� breaks model. The break date thus selected is the one associated with this overall minimum.
The estimates OTi need not be the global minimizers of the sum of squared residuals, one can also
use sequential one at a time estimates which allows the construction of a sequential procedure to
select the number of breaks (see Bai, 1997b).

Asymptotic critical values were provided by BP for a trimming ε D 0.05 for q ranging from 1
to 10, and Bai and Perron (2001) present additional critical values for ε D 0.10, 0.15, 0.20 and
0.25. Note that, unlike for the supFT�k; q� test, we do not need to impose similar restrictions on
the number of breaks for different values of the trimming ε.4 Of course, all the same options

4 However, considering more than int[1/ε] � 2 breaks implies changing ε as one progresses through the sequential
procedure. For example, one could use a trimming ε D 0.05 and find 6 breaks in the first half of the sample, then switch
to a trimming of ε D 0.20 to test for a seventh break. The accompanying computer program does not incorporate the
possibility of such switch and, hence, in this case the same constraints as for the supFT�k; q� test on the maximum number
of breaks apply.
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are available as for the previous tests concerning the potential specifications of the nature of the
distributions for the errors and the data across segments.

5.4. Estimating the Number of Breaks

A common procedure to select the dimension of a model is to consider an information criterion.
Yao (1988) suggests the use of the Bayesian Information Criterion (BIC) while Liu et al. (1997)
propose a modified Schwarz criterion (LWZ). Perron (1997) presented a simulation study of the
behaviour of these two information criteria and of the AIC in the context of estimating the number
of changes in the trend function of a series in the presence of serial correlation. The results first
showed the AIC to perform very badly. The BIC and LWZ perform reasonably well in the absence
of serial correlation in the errors but chooses a much higher value than the true one in the presence
of serial correlation. When no serial correlation is present in the errors but a lagged dependent
variable is present, the BIC performs badly when the coefficient on the lagged dependent variable
is large. In such cases, the LWZ performs better under the null of no break but underestimate the
number of breaks when some are present. The method suggested by BP is based on the sequential
application of the supFT��C 1j�� test using the sequential estimates of the breaks.

5.5. Summary and Practical Recommendations

Bai and Perron (2000) present an extensive simulation analysis pertaining to the size and power
of the tests, the accuracy of the asymptotic approximations for the confidence intervals and the
relative merits of different methods to estimate the number of breaks. The methods are shown to
be adequate, in general, but care must be taken when using particular specifications. The following
recommendations are made:

ž First, ensure that the specifications are such that the size of the test is adequate under the
hypothesis of no break. If serial correlation and/or heterogeneity in the data or errors across
segments are not allowed in the estimated regression model (and not present in the DGP), using
any value of the trimming ε will lead to tests with adequate sizes. However, if such features are
allowed, a higher trimming is needed. With a sample of T D 120, ε D 0.15 should be enough for
heterogeneity in the errors or the data. If serial correlation is allowed, ε D 0.20 may be needed.
These could be reduced if larger sample sizes are available.

ž Overall, selecting the break point using the BIC works well when breaks are present but less so
under the null hypothesis of no break, especially if serial correlation is present. The method based
on the LWZ criterion works better under the null hypothesis (even with serial correlation) by
imposing a higher penalty. However, this higher penalty translates into a very bad performance
when breaks are present. Also, model selection procedures based on information criteria cannot
take into account potential heterogeneity across segments unlike the sequential method. Overall,
the sequential procedure works better.

ž There are instances where the sequential procedure can be improved. The problem is that, in
the presence of multiple breaks, certain configurations of changes are such that it is difficult to
reject the null hypothesis of 0 versus 1 break but it is not difficult to reject the null hypothesis
of 0 versus a higher number of breaks (this occurs, for example, when 2 changes are present
and the value of the coefficient returns to its original value after the second break). In such
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cases, the sequential procedure breaks down. A useful strategy is to first look at the UD max or
WD max tests to see if at least one break is present. If these indicate the presence of at least
one break, then the number of breaks can be decided based upon a sequential examination of
the supF��C 1j�� statistics constructed using global minimizers for the break dates (i.e. ignore
the test F�1j0� and select m such that the tests supF��C 1j�� are insignificant for � ½ m). This
method leads to the best results and is recommended for empirical applications. Its usefulness
is illustrated in Section 6.2.

ž In general, non-symmetric confidence intervals for break dates provide better coverage
rates than symmetric confidence intervals when data are non-stationary (the second moment
of regressors are non-constant). This case includes structural changes in autoregressive
models because a change in the intercept or a change in the AR coefficient implies
non-constant second moment of the observable variables. Indeed, Monte Carlo simula-
tions show asymmetric distributions for the estimated break points for AR models. These
asymmetric distributions are well approximated by the asymptotic distributions discussed in
Section 4.2.

ž The coverage rates for the break dates are adequate unless the break is either too small
(so small as not to be detected by the tests) or too large. This is, from a practical point
of view, an encouraging result. The confidence intervals are inadequate (in that they miss
the true break value too often) exactly in those cases where it would be quite difficult to
conclude that a break is present (in which case they would not be used anyway). When
the breaks are very large the confidence intervals do contain the true values but lead to a
conservative assessment of the accuracy of the estimates. It was found that correcting for
heterogeneity in the data and/or errors across segments yields improvements over a more
straightforward uncorrected interval. Correcting for serial correlation also does lead to substantial
improvements.

6. EMPIRICAL APPLICATIONS

We discuss two applications of the procedures presented. The first analyses the US ex-post real
interest rate series considered by Garcia and Perron (1996). The second re-evaluates some findings
of Alogoskoufis and Smith (1991) who analysed changes in the persistence of inflation and shifts
in an expectations-augmented Phillips curve resulting from such changes.

6.1. The US Ex-post Real Interest Rate

Garcia and Perron (1996) considered the US ex-post real interest rate (the three-month treasury bill
rate deflated by the CPI inflation rate taken from the Citibase data bank). The data are quarterly and
the sample is 1961:1–1986:3. Figure 2 presents a graph of the series. Of interest is the presence
of abrupt structural changes in the mean of the series. To that effect we apply our procedure
with only a constant as regressor (i.e. zt D f1g) and account for potential serial correlation via
non-parametric adjustments (see the discussion in Section 4). We allowed up to 5 breaks and used
a trimming ε D 0.15, hence each segment has at least 15 observations. We also allowed serial
correlation in the errors and different variances of the residuals across segments. The results are
presented in Table I.
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Figure 2. US ex-post real interest rate 1961:1–1986:3

The first issue to be considered is the determination of the number of breaks. Here the supFT�k�
tests are all significant for k between 1 and 5. So at least one break is present. The supFT�2j1�
test takes the value 34.31 and is therefore highly significant. The FT�3j2� test has value 14.32
which is also significant at the 5% level. The sequential procedure (using a 5% significance level)
selects 3 breaks while the BIC and the modified Schwarz criterion of Liu et al. (1997) selects two
breaks. Given the documented facts that the information criteria are biased downward and that the
sequential procedure and the FT��C j�� perform better in this case, we conclude in favour of the
presence of three breaks.

Of direct interest are the estimates obtained under global minimization. The break dates are
estimated at 1966:4, 1972:3 and 1980:3. The first date has a rather large confidence interval
(between 1964:1 and 1969:2 at the 95% significance level). The other break dates are, however,
precisely estimated since the 95% confidence intervals cover only a few quarters before and
after. The differences in the estimated means over each segment are significant and point to a
decrease of 0.95% in 1966:3, another decrease of 2.67% in late 1972 and a large increase of
7.44% in late 1980. These results contrasts with those of Garcia and Perron (1996) who found
only two breaks. This points to the fact that our procedure may be more powerful than the
regime switching method they used to detect abrupt changes in level. In particular, the difference
in results is largely due to the fact that allowance is made for different error structures across
segments.5

5 Garcia and Perron (1996) only allowed the mean of the series and the variance of the errors to be state dependent,
the autoregressive parameters being constrained to be fixed across regimes. If no allowance is made for the possibility
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Table I. Empirical results: US ex-post real interest rate (1961:1–1986:3)

Specifications
zt D f1g q D 1 p D 0 h D 15 M D 5

Tests1

SupFT�1� SupFT�2� SupFT�3� SupFT�4� SupFT�5� UDmax WDmax
57.91Ł 43.01Ł 33.22Ł 24.77Ł 18.33Ł 57.91Ł 57.91Ł

SupF�2j1� supF(3j2) supF(4j2)
33.93Ł 14.72Ł 0.03

Number of breaks selected2

Sequential 3
LWZ 2
BIC 2

Estimates with Three Breaks3

Oυ1 Oυ2 Oυ3 Oυ4 OT1 OT2 OT3
1.82 0.87 �1.80 5.64 66 : 4 72 : 3 80 : 3

(0.19) (0.16) (0.51) (0.60) (64 : 1–69 : 2) (70 : 3–72 : 4) (79 : 4–81 : 1)

Notes:
1 The supFT�k� tests and the reported standard errors and confidence intervals allow for the possibility of serial correlation
in the disturbances. The heteroscedasticity and autocorrelation consistent covariance matrix is constructed following
Andrews (1991) and Andrews and Monahan (1992) using a quadratic kernel with automatic bandwidth selection based
on an AR(1) approximation. The residuals are pre-whitened using a VAR(1).
2 We use a 5% size for the sequential test supFT��C 1j��.
3 In parentheses are the standard errors (robust to serial correlation) for Oυi �i D 1, . . . , 4� and the 95% confidence intervals
for OTi�i D 1, 2, 3�.
Ł Significance at the 5% level.

6.2. Changes in the Persistence of Inflation and the Phillips Curve

Alogoskoufis and Smith (1991) considered the expectations-augmented Phillips curve:

wt D ˛1 C ˛2E�ptjIt�1�C ˛3ut C ˛4ut�1 C 
t

where wt is the log of nominal wages, pt is the log of the Consumer Price Index, and ut is the
unemployment rate. They posit that inflation is an AR(1) so that

E�ptjIt�1� D υ1 C υ2pt�1 �12�

Hence, upon substitution, the Phillips curve is:

wt D �1 C �2pt�1 C �3ut C �4ut�1 C 
t �13�

where �1 D ˛1υ1 and �2 D ˛2υ2. Here, a parameter of importance is υ2 which is interpreted as
measuring the persistence of inflation. Using post-war annual data from the United Kingdom

of changes in the structure of the correlation in the errors, applying our method leads to the same conclusion as in
Garcia and Perron (1996), namely two breaks in 1972:3 and 1980:3. Allowing the structure of the correlation to differ
across segments show that the errors are negatively correlated in the 60’s and basically i.i.d. in the 1970s and 1980s.
This negative correlation in the 1960s allows a more precise estimate of the break date by reducing its variance and,
accordingly, the tests also have higher power.
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and the United States, Alogoskoufis and Smith (1991) argue that the process describing inflation
exhibits a one-time structural change from 1967 to 1968, whereby the autoregressive parameter υ2

is significantly higher in the second period. This is interpreted as evidence that the abandonment of
the Bretton Woods system relaxed the discipline imposed by the gold standard and created higher
persistence in inflation. They also argue that the parameter �2 in the Phillips curve equation (13)
exhibits a similar increase at the same time, thereby lending support to the empirical significance
of the Lucas critique.

Using the methods presented in this paper, we re-evaluate Alogoskoufis and Smith’s (1991) claim
using post-war annual data for the United Kingdom.6 Consider first the structural stability of the
AR�1� representation of the inflation series whose graph is depicted in Figure 3. When applying
a one-break model (not reported), we indeed find the same results, namely a structural change in
1967 with υ2 increasing from 0.274 to 0.739 while υ1 remains constant. The estimate of the break
is, however, imprecisely estimated with a 95% confidence interval covering the period 1961–1973.
More importantly, the supFT�1� test is not significant at any conventional level indicating that the
data do not support a one-break model. A feature of substantial importance is that a look at the
graph of the inflation series suggests different variability in different periods. To that effect, we
have investigated the stability of the inflation process allowing different variances for the residuals
across segments. Details of the estimation results are contained in Table II. Again, the supFT�1�
test is not significant at any conventional level, but the supFT�2� test is, however, significant at

Figure 3. POST-war UK inflation rate 1947–1987

6 The data are the same as in Alogoskoufis and Smith (1991) and were kindly provided by George Alogoskoufis. We refer
the reader to their paper for details on the definition and source of each series.
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Table II. Empirical results: UK CPI inflation rate 1947–1987

Specifications
zt D f1, yt�1g q D 2 p D 0 h D 8 M D 3
het�u D 1 ε D 0.20

Tests
SupFT�1� SupFT�2� SupFT�3� SupFT�2j1� SupFT�3j2�

8.50 9.88a 6.74b 10.22b 1.25

UD max WD max (10%) WD max (5%)
9.88b 11.71b 12.08

Number of breaks selected
Sequential procedure 0

LWZ 0
BIC 0

Parameter Estimates with Two Breaks
Oυ1,1 Oυ1,2 Oυ1,3 OT1 OT2

0.024 0.00 0.018 1967 1975
(0.008) (0.020) (0.016) (1964–1968) (1969–1981)

Oυ2,1 Oυ2,2 Oυ2,3
0.274 1.34 0.684

(0.200) (0.250) (0.136)

a,b A statistic significant at the 5% and 10% levels, respectively.

the 5% level and the supFT�2j1� test is significant at the 10% level. The supFT��C 1j�� test is
not significant for any � ½ 2. Since the supFT�1� test is not significant, it is not surprising that
the sequential procedure selects zero break; the BIC and LWZ also select zero break. However,
the supFT�2�, the UDmax, the WDmax and the supFT�2j1� tests being all significant, the results,
overall, suggest a model with two breaks.

Nevertheless, the estimates of a two-breaks model reveal a similar picture as that suggested
by Alogoskoufis and Smith (1991). The first break date is the same as in the one-break model,
namely 1967, which is linked to the end of the Bretton Woods system. The second break is
located in 1975. The coefficient estimates point to the importance of shifts in the persistence of
inflation. Indeed, the coefficient υ2 varies from 0.274 to 1.34 in 1967. It is, however, back to
0.684 after 1975 suggesting that the effect of the abandonment of the Bretton Woods system was
short-lasting.

Since there are structural changes in the inflation process, it is of interest to see if the Phillips
curve equation underwent similar changes in accordance with the Lucas critique. Here, the setup
involves a partial structural change model since changes in the inflation process should only
affect the coefficients �1 and �2 with no effect on the coefficients �3 and �4. The results are
presented in Table III. The evidence points strongly to a two-breaks model with exactly the
same break dates as for the inflation process (1967 and 1975). The supFT�2j1� is significant
as well as the supFT�k� tests for all k. The sequential method, the BIC and the LWZ all select
2 as the number of breaks. Finally, the UD max and WD max tests are also highly significant.
Furthermore, the coefficient �2 (associated with the lagged inflation) move in the same direction
as the persistence of inflation; in particular there is a substantial increase in this coefficient in 1967
from 0.094 to 1.23 (following a change in persistence from 0.274 to 1.34). In 1975, �2 shows
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Table III. Empirical results: Phillips curve equation

Specifications
yt D fwtg q D 2 p D 2 zt D f1,pt�1 g xt D fut, ut�1g
het�u D 0 ε D 0.10 h D 4 M D 5 ε D 0.10

Tests
SupFT�1� SupFT�2� SupFT�3� SupFT�4�

22.84a 25.77a 20.76a 17.19a

SupFT�2j1� SupFT�3j2� SupFT�4j3� UD max WD max �1%�
24.39a 4.98 4.98 25.77a 32.34a

Number of breaks selected
Sequential procedure 2

LWZ 2
BIC 2

Parameter estimates with two breaks
O�1,1 O�1,2 O�1,3 OT1 OT2

0.066 0.062 0.181 1967 1975
(0.012) (0.019) (0.054) (1965–1968) (1973–1976)

O�2,1 O�2,2 O�2,3
0.094 1.23 0.015

(0.240) (0.205) (0.257)

O�3 O�4
�0.141 �0.877
(0.581) (0.373)

aA statistic significant at the 1% level.

a substantial decrease in agreement with the decrease in the persistence of inflation. Overall, the
results confirm the conclusions of Alogoskoufis and Smith (1991) and provide support for the
Lucas critique.

7. CONCLUSIONS

This paper has presented a comprehensive treatment of practical issues arising in the analysis
of models with multiple structural changes. Of considerable interest is a dynamic programming
algorithm which makes possible efficient computation of the estimates of the break points as
global minimizers of the sum of squared residuals. We have also discussed methods to construct
confidence intervals for the break dates, test statistics and model selection procedures. All
procedures discussed are available as options in a GAUSS program available for non-profit
academic purposes.
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