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This research compares derivative pricing model and statistical time-series
approaches to hedging. The finance literature stresses the former
approach, while the applied economics literature has focused on the latter.
We compare the out-of-sample hedging effectiveness of the two approaches
when hedging commodity price risk using futures contracts. For various
methods of parameter estimation and inference, we find that the deriva-
tive pricing models cannot out-perform a vector error-correction model
with a GARCH error structure. The derivative pricing models’ unpalatable
assumption of deterministically evolving futures volatility seems to impede
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their hedging effectiveness, even when potentially foresighted option-
implied volatility term structures are employed. © 2005 Wiley Periodicals,
Inc. Jrl Fut Mark 25:613–641, 2005

INTRODUCTION

Two broad strategies for optimally hedging risky market commitments
have emerged in the academic literature and in practice. The applied
economics literature has focused on the use of statistical models of the
observed time series of cash and futures prices in hedging. Early devel-
opment of this type of optimal hedging is found in Johnson (1960), Peck
(1975), and Kahl (1983), among others. Typically, this type of hedging
considers an agent with a non-tradable position in a cash commodity
who plans to buy or sell some number of commodity futures contracts
that will maximize her utility. This traditionally involved choosing a level
of hedging that would minimize the variance of changes in the hedger’s
portfolio value by making static estimates of the variances of changes in
the cash and futures prices and the covariance between those changes.
Recently, Cecchetti, Cumby, and Figlewski (1988), Myers (1991), and
Baillie and Myers (1991) have adopted the use of models of time-varying
conditional variance for optimal hedging. Noting that the use of differ-
enced data will lose information about the long-run relationship between
two time series, Kroner and Sultan (1993) incorporate the cointegrating
relationship between cash and futures prices into their model. Gagnon,
Lypny, and McCurdy (1998) and Haigh and Holt (2000) extend these
models to include multiple risks.

The finance literature on the other hand has typically stressed the
use of derivative pricing models for hedging. This began when Black and
Scholes (1973) and Merton (1973) noted that the seller of a derivative
could form a risk-free portfolio by holding just the right quantity of
the underlying security. This quantity is determined by the rate at which
the price of the derivative will change as the price of the underlying
changes, referred to as the “delta.” This type of hedging is therefore
often referred to as “delta hedging.”

In application, different types of hedgers have tended to make use of
the two strategies. Holders of large derivative (especially option) portfo-
lios generally have employed delta hedging. This is the realm of financial
institutions and “financial engineers” that sell derivatives to their cus-
tomers at a mark-up to the value of a portfolio with price dynamics that
replicate, as closely as possible, those of the derivative. Commodity pro-
ducers and consumers, on the other hand, have more often used the
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time series approach. A typical picture is that of the agricultural producer
with a crop in the ground who wishes to minimize the risk that the price
of the output will fall before the harvest. Despite their differences, these
two types of hedgers face exactly the same problem: They each hold a
position in one market (either underlying or derivative), and wish to take
a position in the other market that will result in maximum benefit. Either
hedger might use either of the two approaches to hedging, despite the
traditional divide.

Each approach has it own merits and drawbacks. The time series
approach does not require the imposition of theory a priori, thereby
avoiding potential misspecification. Also, available time series models
can very effectively represent time-varying covariability among price
series, a commonly observed market phenomenon that is central to the
hedging problem. This approach does not, however, make use of all
available information. For example, time series hedging models consider
neither the arbitrage activity that relates the price of a derivative to its
underlying security, nor theories regarding derivatives’ price variability
(e.g., the Samuelson’s 1965 hypothesis that a futures contract’s volatility
should increase as expiration approaches).

By contrast, the derivative pricing approach directly incorporates
the arbitrage relationship(s) between the derivative and underlying
instrument(s). An additional benefit of this approach is the ability to use
observed market prices to infer the expectations of market participants. For
example, option prices can be used to infer the future levels of volatility
that knowledgeable industry participants are anticipating in an associated
underlying market. The adoption of the derivative pricing approach
comes at the price, however, of requiring various simplifying assump-
tions that have varying degrees of implausibility. Crucially, derivative
pricing models do not incorporate the stochastically time-varying volatility
that is widely acknowledged to exist in most financial and commodity
markets.

Given the above-stated benefits and drawbacks of each of the two
approaches to hedging, it is not immediately clear that one approach
should be preferred in any given situation. No previous research has
directly compared the effectiveness of these two hedging strategies, and
we thus undertake such an evaluation here. We directly compare the in-
sample and out-of-sample hedging performance of the two approaches
for a trader that is long physical crude oil, and uses a simple derivative
with a linear payoff function (a futures contract) to hedge the associated
price risk. We assume that the hedger maximizes a mean-variance objec-
tive function, and hedging effectiveness is measured by the increases in
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the value of the objective function that the hypothetical trader realizes by
implementing each strategy (relative to not hedging at all). Two models
that have been developed in the commodity contingent claims pricing lit-
erature are considered—the Schwartz (1997) one-factor model, and the
two-factor model of Gibson and Schwartz (1990). Various strategies for
estimating and inferring these models’ parameters are employed. The
competing time series model is a vector error-correction model, with a gen-
eralized autoregressive conditional heteroskedastic error structure.

In the next section the hedging problem and the time series model
are described. Following this, we describe the derivative pricing models,
and describe how they can be adapted for optimal hedging by an agent with
a mean-variance objective function. This continuous time mean-variance
hedging can be considered a generalization of delta hedging. We also
show how these models can be extended to allow for spatial and form
differences between the commodity to which a hedger is committed and
the commodity underlying the futures contract. Then in the next section
the data as well as estimation and inference of the models’ parameters are
discussed, followed by a report on the models’ hedging effectiveness.
Conclusions are presented in the final section.

HEDGING COMMODITY PRICE RISK 
USING TIME SERIES MODELS

We consider a hedger that is long a physical commodity, and wishes to
optimally select a quantity of futures contracts to sell. The hedge ratio, b,
is the ratio of the size of the futures market position to the size of the
cash market position. The change in the hedger’s portfolio value over the
discrete interval from time t � 1 to time t is given by

Pt � Pt�1 � (Lt � Lt�1) � bt�1(Ft � Ft�1) (1)

where Pt, Lt, and Ft represent portfolio value, the local cash price of the
commodity held by the hedger, and the futures price, respectively, in
period t. Note that the commodity held by the hedger does not necessar-
ily correspond exactly to the commodity underlying the futures contract.
The hedger may be holding a different grade of the commodity than
that specified in the futures contract, or she may not be able to deliver
her commodity against the futures contract at par value locally. She
may be implementing a cross hedge (i.e., holding a different commodity
than that specified by the futures contract). We therefore distinguish
between a local cash price of an arbitrary commodity, and the price at
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the specified futures delivery location of the specified commodity. We
refer to the former as a local cash price Lt as above, and to the latter as
the spot price St.

We assume that the hedger maximizes a mean-variance objective.
This is equivalent to maximizing constant absolute risk aversion utility
when end-of-period terminal wealth is normally distributed (Hey, 1979).
Furthermore, under such circumstances the mean-variance objective
given below is the expected certainty equivalent income. The hedger’s
problem for each period is formulated as follows:

(2)

where E is the conditional expectation operator, �Pt is the change in
portfolio value from t � 1 to t, �t�1 is the information available as of
t � 1, lU is the coefficient of absolute risk aversion, and var() is the con-
ditional variance operator. Note that the risk-minimizing objective is a
special case of Equation (2) where lU � �. Note that the conditional
variance term in Equation (2) can be expanded, using Equation (1), as

(3)

where cov() is the conditional covariance operator. The objective-
maximizing hedge ratio is then given by

(4)

The second-order condition for this problem is the negative of the risk
aversion coefficient multiplied by the conditional variance of changes in
the futures price, and we are thus guaranteed a global maximum for a
risk-averse hedger. If we have lU � �, the first term in the numerator is
zero and we have the minimum-variance hedge ratio. For 0 � lU � �,
the optimal hedge ratio contains the minimum-variance component, and
a speculative component. If our hedger anticipates a decrease in the
futures price, he will reduce the level of hedging below the minimum
variance level to avoid losses in the futures market. Likewise, an antici-
pated increase in the futures price will compel our hedger to increase the
size of the futures position.

Calculating the optimal hedge ratio in Equation (4) requires the
time-series modeler to provide two types of information—the conditional
expected futures price change and conditional variance and covariance

bt�1 �
�l�1

U E(¢Ft 0  �t�1) � cov(¢Lt, ¢Ft 0  �t�1)

var(¢Ft 0  �t�1)

var(¢Lt 0  �t�1) � b2
t�1 var(¢Ft 0  �t�1) � 2bt�1 cov(¢Lt, ¢Ft 0  �t�1)

Max
bt�1

cE(¢Pt 0  �t�1) �
lU

2
  var(¢Pt 0  �t�1)d
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forecasts. Recent academic hedging research advocates obtaining the
first piece of information using a vector error correction (VEC) model.
This is an appropriate modeling technique in the event that each of the
two price series is found to follow a unit root process, but a linear com-
bination of the two is found to be stationary (Engle & Granger, 1987).
This linear combination is interpreted as representing a long-run equi-
librium between the two levels series. The VEC model is essentially a
vector auto-regression model in which a deviation from the long-run
equilibrium (the “error”) in one time period is subject to some degree of
correction in the following time period. A basic representation of a VEC
for two variables is as follows:

(5)

where yt is the 2 � 1 vector of observations at time t, p0 is a 2 � 1 para-
meter vector, each pi is a 2 � 2 coefficient matrix, b is the cointegrating
vector characterizing the long-run equilibrium, a is a 2 � 1 coefficient
vector, and et is a vector of innovations. The product byt�1 is the devia-
tion from the long-run equilibrium, and a characterizes the rate at
which each of the two variables responds to this deviation. Forming y
using cash and futures prices, Equation (5) can then be used to generate
forecasts of futures price changes—one of the components of the optimal
hedge ratio above.

The other pieces of information that are required to calculate the
optimal hedge ratio in Equation (4) are the conditional variances and
covariance. These can be forecast using multivariate versions of the
auto-regressive conditional heteroskedasticity (ARCH) model of Engle
(1982) or the generalized ARCH (GARCH) model of Bollerslev (1986).
A GARCH error structure implies that the conditional second moment of
the innovation vector of a model follows an autoregressive, moving average
process—it is a function of past innovation vectors and past second
moments. Here we employ a GARCH(1,1) model with the diagonal vech
parameterization of Bollerslev, Engle, and Wooldridge (1988). The con-
ditional distribution of the error from Equation (5) is then given by

(6)

(7)

Here, vech() is the column stacking operator that stacks the lower trian-
gular portion of a symmetric matrix, W is a 3 � 1 vector of constants,
and A and B are a diagonal 3 � 3 coefficient matrices. Equation (7) can

 vech(Ht) � W � A vech(et�1e
T
t�1) � B vech(Ht�1)

 et 0  �t�1 � N(0, Ht)

¢yt � p0 � a
r

i�1
 pi¢yt�i � abyt�1 � et
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be used to form one-period ahead forecasts of the variance of futures
price changes and the covariance between futures and cash price
changes. The VEC-GARCH model given by Equations (5) through (7)
thus provides a means by which a hedger can select the optimal level of
hedging.

HEDGING COMMODITY PRICE RISK USING
DERIVATIVE PRICING MODELS

Early models for pricing contingent claims included only a single sto-
chastic factor, the price of the underlying asset. These models assumed
that a risk-free portfolio consisting of a short position in the derivative
contract and a long position in the underlying asset could be formed, and
that this portfolio should earn the risk-free rate of return. Ross (1978)
noted that this assumption is inappropriate in the event that there are
benefits to holding an actual asset, rather than merely holding a contract
calling for future delivery. When the asset is a commodity, the flow of
these benefits is referred to as a convenience yield. Kaldor (1939)
describes this phenomenon, and it features prominently in the theory of
storage developed in Working (1949) and Brennan (1958). Consideration
of the convenience yield motivated the development of the Brennan and
Schwartz (1985) model for pricing commodity contingent claims, which
assumed that a commodity’s convenience yield was a constant propor-
tion of the spot price. This assumption that the convenience yield could
be specified as a deterministic function of a commodity’s spot price was
investigated empirically in Brennan (1991), and Gibson and Schwartz
(1991). Both studies decisively concluded that such an assumption was
inappropriate, and that the convenience yield should be specified as a
second stochastic factor.

Gibson and Schwartz (1990) thus developed a model for pricing
commodity contingent claims with two stochastic factors, the first being
the spot price of the commodity and the second being the instantaneous
net (of storage costs) convenience yield of the commodity. In this model,
the holder of a commodity derivative faces not only the risk that the spot
price of the commodity will change, but also the risk associated with
changes in the convenience yield. As it is not possible to hedge the latter
risk, it is not possible to form a completely risk-free portfolio, and the
Gibson–Schwartz (GS) model is one of incomplete markets.

The GS model assumes that the spot price of a commodity S and
associated instantaneous net convenience yield d follow the joint diffu-
sion process given by
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1The presence of the market price of convenience yield risk is due to the fact that the convenience
yield is not a traded asset, and convenience yield risk is unhedgable. The Gibson–Schwartz model
is therefore an “incomplete markets” model. This market price of risk must be either inferred from
market data (the approach we take in this article) or otherwise specified. Another form of market
incompleteness—time-varying volatility—is not incorporated into the models that we consider here,
as closed-form derivative pricing formulae are not available for such models, greatly complicating
applications such as ours. To the extent that the restrictive assumption of constant volatility is unre-
alistic, we expect that the hedging performance of these models will be negatively impacted.

(8)

(9)

where m is the drift of spot price returns, and are the instantaneous
variances of spot price returns and the convenience yield respectively,
dz1 and dz2 are increments to correlated Brownian motions, with the
multiplication rule dz1dz2 � r12dt, and r12 being the correlation coeffi-
cient. The convenience yield is assumed to revert at rate k to a long-run
mean level a. By Ito’s Lemma, the price G(S, d, t) of a commodity con-
tingent claim that is a function of time, and a twice continuously differ-
entiable function of S and d then follows the diffusion

(10)

where t� T � t is the length of time from the present (t) until expiration
of the derivative (T), and GX represents the partial derivative of G with
respect to X. Gibson and Schwartz present a no-arbitrage argument that
leads to following partial differential equation that must be satisfied by
the price F(S, d, t) of a futures contract:

(11)

where r is the risk-free rate of return, and l is the market price of
convenience yield risk.1 The solution to Equation (11), as reported in
Hilliard and Reis (1998) is

(12)� a1 � e�kt

k
b ca �

ls2

k
�
s2

2

k2 �
s1s2r12

k
d � cs2

2(1 � e�2kt)

4k3 d f

F(S, d, t) � S exp e c�d(1 � e�kt)
k

d � t cr � a�
ls2

k
�
s2

2

2k2 �
s1s2r12

k
d

� Fd[k(a � d) � ls2)] � Ft � 0

1
2

 FSSS2s2
1 �

1
2

 Fdds
2
2 � FSdSr12s1s2 � FdS(r � d)

� [s1SGS] dz1 � [s2Gd] dz2

 dG � c�Gt �
1
2

 GSSs
2
1S

2 � GSdSr12s1s2 �
1
2

 Gdds
2
2 � GSmS d  dt

s2
2s2

1

 dd � k(a � d) dt � s2 dz2

 dS�S � m dt � s1 dz1



Derivative Pricing Model and Hedging 621

We now turn to the task of adapting the GS model for use in hedg-
ing. Using Equation (12) to find the appropriate partial derivatives to
substitute into Equation (10), we find the diffusion followed by a futures
contract to be

(13)

For a hedger whose local cash price corresponds to the spot price,
changes in portfolio value are given by dP � dS � b dF. Using this, apply-
ing Ito’s Lemma to Equation (8), and using Equation (13), we find that
the short hedger’s portfolio dynamics are described by the diffusion

(14)

Defining another standard Brownian motion z and a parameter sP

such that

(15)

we can simplify Equation (14) to

(16)

with drift

(17)

and instantaneous variance

(18)� 2bSF cs2
1 � s1as2(1 � e�kt)

k
br12 d

s2
P �  S

2s2
1 � b2F2 cs2

1 � 2s1s2r12a (1 � e�kt)
k

b � s2
2a (1 � e�kt)

k
b2 d

mP � cS am �
s2

1

2
b � bF am � (r � d) �

ls2

k
 (1 � e�kt)b d

dP � mP dt � sP dz

sP  dz � [(S � bF)s1] dz1 � cbF as2(1 � e�kt)

k
b d  dz2

 � [(S � bF)s1] dz1 � cbF as2(1 � e�kt)

k
b d  dz2

 dP � cSam �
s2

1

2
b � bF am � (r � d) �

ls2

k
 (1 � e�kt)b d  dt

 � [Fs1] dz1 � cFa�s2(1 � e�kt)

k
b d  dz2

 dF � cFam � (r � d) �
ls2

k
 (1 � e�kt)b d  dt
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This expression for the instantaneous variance of changes in portfolio
value is analogous to Equation (3)—the first term is the instantaneous
variance of spot price changes, the second term is b2 multiplied by the
instantaneous variance of futures price changes, and the third term is �2b
multiplied by the instantaneous covariance between spot and futures
price changes. Armed with the above specification for the controlled sto-
chastic process followed by the hedger’s portfolio, we are in a position to
solve the continuous time version of the hedging problem given by
Equation (2). In the context of the GS model, we find the following
expression for the optimal hedge ratio:

(19)

where

(20)

Note that the above expression for the optimal hedge ratio has been
developed for a hedger whose cash market commitment exactly corre-
sponds to the commodity underlying the futures contract (i.e., L � S).
This result is useful to those hedgers, but many hedgers’ cash market
commitments vary from the specifications of the futures contract. The GS
model can be augmented, however, to derive a more general formulation.
We define the difference between the hedger’s cash price and the spot
price as

(21)

and we propose the following stochastic process for B:

(22)

where s2
3 is the instantaneous variance of changes in B, dz3 is a third

Brownian motion, and we add the multiplication rules dz1dz3 � r13 dt
and rules dz2dz3 � r23 dt. We assume that B reverts to level b at rate g.
The mean-reverting nature of B is justified in the event that a stable
long-run relationship between the cash and spot prices exists. In the
event that no such relationship existed, the futures contract would make
an inappropriate hedging vehicle for the cash price concerned. Changes

dB � g(b � B) dt � s3 dz3

B � L � S

mF � Fam � (r � d) �
ls2

k
(1 � e�kt)b

bGS �

�l�1
U mF � SF cs2

1 � s1as2(1 � e�kt)

k
br12 d

F2 cs2
1 � 2s1s2r12a (1 � e�kt)

k
b � s2

2a (1 � e�kt)
k

b2 d
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in the hedger’s portfolio are then given by dPA � dB � dS � b dF, and
we can follow a succession of steps similar to those above to arrive at the
following diffusion:

(23)

with

(24)

and

(25)

The differences between expressions (18) and (25) are in the terms that
represent the instantaneous variance of cash price changes and the
covariance between cash and futures price changes. The variance of
cash price changes now reflects the interaction between the spot price
and its difference with the local cash price. The covariance term now
contains portions that reflect the covariation of B with the other sto-
chastic factors in the model. This results in an expression for the optimal
hedge ratio, analogous to Equation (19), of

(26)

This is a more general optimal hedge ratio that could be used by a hedger
who does not plan to make delivery at the delivery location specified by
the futures contract, or who is implementing a cross hedge.

Schwartz (1997) presents a one-factor model for pricing commodity
contingent claims, hereafter referred to as the S97 model. Rather than
arguing that a risk-free portfolio of a derivative and the underlying
commodity can be formed, however, this model is developed by attaching

bAGS �

�l�1
U mF � cSFs2

1 � SFs1as2(1 � e�kt)

k
br12 � Fs3as2(1 � e�kt)

k
br23 � Fs1s3r13 d

F2 cs2
1 � 2s1s2ra (1 � e�kt)

k
b

12
� s2

2a (1 � e�kt)
k

b2 d

� 2b cSFs2
1 �SFs1as2(1�e�kt)

k
br12 � Fs3as2(1� e�kt)

k
br23� Fs1s3r13d

� b2F2 cs2
1 � 2s1s2r12a (1� e�kt)

k
b � s2

2a (1 � e�kt)
k

b2d
s2

AP � :S2s2
1 � 2Ss1s3r13 � s2

3 ;

mAP � cg(b � B) � Sam �
s2

1

2
b � bFam � (r � d) �

ls2

k
(1 � e�kt)b d

dPA � mAP dt � sAP dz
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a market price of (spot price) risk to the derivative. The S97 model does
not therefore follow in the spirit of Kaldor (1939), Working (1949), and
Brennan’s (1958) theory of storage as the GS model did, but instead
follows Keynes (1930) and Hicks (1939) in emphasizing the role of risk
and return in determining the value of contingent claims. In the S97
model, the spot price is assumed to follow the process

(27)

where as before s1
2 is the instantaneous variance of changes in the natu-

ral logarithm of the spot price, and the log of the spot price reverts to
level m at rate k. The price of a futures contract must satisfy, as discussed
by Schwartz (1997), the partial differential equation

(28)

where l is the market price of risk. Schwartz gives the solution as

(29)

Following the discussion of hedging using the GS model, when C � S,
we have the following process for the short hedger’s portfolio under the
S97 model

dP � mP dt � sP dz (30)

where

(31)

and

(32)

The optimal hedge ratio for the short hedger when L � S is then

(33)

Note that if we ignore the speculative component, the variance-minimizing
hedge ratio is (S�F) exp(kt). Using Equation (29), it is easy to see that
this is identical to F�1

S , demonstrating that the adaptation of contingent
claims models for mean-variance hedging that we outline here can be

bS97 �
�l�1

U kl � Ss2
1

Fe�kts2
1

s2
P � S2s2

1 � b2F2e�2kts2
1 � 2bSFe�kts2

1

mP � k(m � lnS)S � bFe�ktkl

F(S, t) � exp c e�kt lnS � (1 � e�kt)am�
s2

1

2k
�lb �

s2
1

4k
(1� e�2kt)d

1
2
s2

1S
2FSS � k(m � l � lnS)SFS � Ft

dS � k(m � lnS)S dt � s1S dz1
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2In-sample hedging effectiveness is not evaluated over the entire in-sample estimation period
because option-trading volume was insufficient to carry out the inference of the term structure of
volatility in the S97 model.

considered a generalization of delta hedging. Augmenting the S97 for the
case where L 	 S, again using Equation (21) and specifying

(34)

similar to before we find the diffusion followed by the hedger’s portfolio is

(35)

with

(36)

and

(37)

The optimal hedge ratio for the short hedger when L 	 S is then given by

(38)

DATA, PARAMETER ESTIMATION, 
AND PARAMETER INFERENCE

The data we use are week-ending observations of the New York Mercantile
Exchange (NYMEX) crude oil futures contracts, options on those
futures, and the associated spot price. The futures and spot price data
are observed over the period January 6, 1984 through June 21, 2002. We
use option prices observed January 3, 1992 through June 21, 2002.
Option prices were available before 1992, but trading volumes were
not sufficient for the purposes outlined below. All data were provided
by the Commodity Research Bureau (Chicago, Illinois). We divide the
data into three periods. The first time period, January 6, 1984 through
December 27, 1991 (417 observations), is used strictly for parameter
estimation. The second time period, January 3, 1992 through December
27, 1996 (261 observations), is used for both parameter estimation and
the evaluation of in-sample hedging effectiveness.2 Out-of-sample

bAS97 �
�l�1

U kl � Ss2
1 � s1s2r12

Fe�kts2
1

� 2h :SFe�kts2
1 � Fe�kts1s2r12 ;

s2
AP � :S2s2

1 � s2
2 � 2Ss1s2r12 ; � b2 :F2e�2kts2

1 ;

mAP � g(b � B) � k(m � ln S)S � bFe�ktkl

dPA � mAP dt � sAP dz

dB � g(b � B) dt � s2 dz2



626 Bryant and Haigh

hedging effectiveness is evaluated over the final time period, January 3,
1997 through June 21, 2002 (286 observations).

There is one NYMEX crude oil futures delivery per month. The
price data for individual futures contracts were used to construct a
rolling nearby futures series (NEAR) that is used in the parameter esti-
mation and evaluation of hedging effectiveness. Where price changes
were required, as in the unit root testing and VEC model estimation,
care was taken to take changes of the futures price series for each indi-
vidual delivery and use those changes to construct a series of nearby con-
tracts’ price changes. That is to say, we use nearby futures’ changes
(NEARD) rather than simply taking the first differences of a previously
constructed nearby futures price level series (DNEAR). The latter series
would result in roughly one out of every four observations being the
composition of a change in a futures price and the spread between the
expiring and new nearby futures prices (due to monthly contract expira-
tion and the weekly observation frequency). Such a series has no natural
interpretation in the context of hedging, and an uncertain (at best) inter-
pretation in the context of time series econometrics. The NEARD series,
however, contains no observations that are corrupted by futures spreads
and is consistent with the futures price changes that an actual trader
would realize. The differenced spot price series (DS) contains the usual
first differences of the spot prices (S).

Following Gibson and Schwartz (1990), we employ the annualized
one-month forward convenience yield when estimating the stochastic
processes underlying the GS model. This is estimated using the price F1

of a nearby futures contract and the price F2 of the subsequent contract
expiring using the following relation

(39)

where r1 is the one-month forward riskless interest rate.
We first discuss the in-sample time series analysis. Augmented

Dickey-Fuller (ADF) tests for unit roots (Fuller, 1976) were carried out
on all series over the in-sample estimation period ( January 6, 1984
through December 27, 1996), with results presented in the first four
rows of Table I. Test results suggest nonstationary behavior, and differ-
enced spot and nearby futures changes series are thus used for the
remainder of the time-series estimation. We test for the presence of
cointegration between S and NEAR using the Engle–Granger (1987)

d � r1 � 12 lnaF1

F2b
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TABLE I

Results From Augmented Dickey–Fuller Tests on Price Dataa

Series K u1

Spot price 0 �2.907
Spot price changes 0 �28.819
Nearby Future price 2 �2.973
Nearby Futures price changes 1 �16.474
ECT 3 �11.458

aTests for the presence of unit roots, using an intercept but no time trend. The critical
value �3.43 (1%) is given in Fuller (1976). The optimal lag length (K ) was chosen using
the Schwarz (1978) information criterion.

3Unfortunately, available implementations of Johansen’s (1988) cointegration methodology perform
data differencing automatically when forming the vector auto-regression. In the present context,
given the series NEAR, an implementation of the Johansen methodology would then generate and
subsequently employ the unacceptable differenced nearby series DNEAR described above.
Hypothesis testing on the coefficients of the cointegrating vector within the Engle–Granger frame-
work can be misleading (Stock, 1987), however we carry out no such testing. The Engle–Granger
methodology does provide a consistent estimate of a single cointegrating vector, however, which is
all that we require here.

methodology.3 Regressing S on NEAR and a constant results in the
following potential cointegrating relation

(40)

An ADF test statistic on the recovered ECT series, presented in the last
row of Table I, strongly rejects the null hypothesis of a unit root, and we
conclude that S and NEAR are indeed cointegrated.

Preliminary univariate analysis of the DS and NEARD series sug-
gested the presence of GARCH effects as expected. Bollerslev’s
GARCH(1,1) process was then fitted to each series under the assump-
tion of normality, with the results found in Table II. Consistent with
Baillie and Myers (1991), no autoregressive terms in the mean equations
were necessary to render the standardized residuals free of autocorrela-
tion, as evidenced by the reported Ljung-Box tests on the standardized
residuals for up to 12th-order autocorrelation. The sample skewness and
kurtosis of the standardized residuals from each model suggest no signif-
icant deviation from normality. Asymptotic standard errors for the condi-
tional variance equation parameter estimates confirm the presence of
GARCH behavior in the series, and the Ljung-Box test on the squared

ECT � S � 0.014 � 1.001NEAR
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TABLE II

Parameter Estimates and Residual Diagnostics for the 
Univariate GARCH(1,1) Modelsa

DSPOT NEARD

m �0.006 (0.027) 0.057 (0.028)
v 0.051 (0.013) 0.089 (0.019)
a 0.184 (0.037) 0.200 (0.038)
b 0.764 (0.042) 0.679 (0.052)

Log-likelihood �197.416 �182.392

m3 �0.330 �0.069
m4 2.180 2.504
Q(12) 17.541 (0.130) 17.249 (0.140)
Q2(12) 6.745 (0.874) 9.581 (0.653)

aThe model is given by:

The numbers in parenthesis beside the parameter estimates are asymptotic standard errors. m3 and m4 are the
sample skewness and sample kurtosis, respectively, of the standardized residuals. Q (12) and Q 2(12) denote
Ljung-Box test statistics for 12th-order autocorrelation in the standardized and squared standardized residuals,
respectively, with the numbers in parenthesis being the associated p-values.

ht � v � ae2t�1 � bht�1

et ƒ�t�1 � N(0, h2
t )

xt � m � et

standardized residuals indicates that the GARCH(1,1) specification ade-
quately represents this behavior.

Based on the results of the univariate time series analyses, the mul-
tivariate VEC-GARCH(1,1) model given by Equations (5) through (7)
was fitted to the DS and NEARD series under the assumption of nor-
mality. The mean equations for each variable include the ECT recovered
using Equation (40). Schwarz (1978) information criterion was
employed in the specification of the mean equations otherwise, and it
was determined that neither constants nor autoregressive terms were
desirable. Results are presented in Table III. Residual diagnostics sug-
gest no serious misspecification. All parameter estimates are significant
at the 1% level. The speed of adjustment coefficients on the ECT suggest
that deviations from the long-run equilibrium are subject to rapid cor-
rection, as expected given the frequency of futures deliveries used to
construct the NEARD series. The parameters estimates associated with
the conditional variance dynamics (Aii, Bii, Wi; i � 1, 3) are similar to
those obtained in the univariate estimation. The parameter estimates
associated with the conditional covariance dynamics (A22, B22, W2) indi-
cate substantial interaction between the two series.
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TABLE III

Parameter Estimates and Residual Diagnostics for the
Multivariate GARCH(1,1) Modela

a1 �0.572 (0.102)
a2 0.299 (0.106)
W1 0.078 (0.006)
W2 0.069 (0.001)
W3 0.070 (0.005)
A11 0.121 (0.011)
A22 0.093 (0.009)
A33 0.096 (0.011)
B11 0.761 (0.014)
B22 0.785 (0.011)
B33 0.786 (0.018)

Log-likelihood 412.628

DSPOT equation
m3 �0.264
m4 2.417
Q(12) 17.157 (0.144)
Q2(12) 11.972 (0.448)

NEARD equation
m3 �0.150
m4 2.795
Q(12) 17.067 (0.147)
Q2(12) 15.493 (0.216)

aThe model is given by:

The numbers in parenthesis beside the parameter estimates are asymptotic standard
errors. m3 and m4 are the sample skewness and sample kurtosis, respectively, of the
standardized residuals. Q(12) and Q2(12) denote Ljung-Box test statistics for 12th-order
autocorrelation in the standardized and squared standardized residuals, respectively,
with the numbers in parenthesis being the associated p-values.

vech (Ht) � W � A vech (et�1e
T
t�1) � B vech (Ht�1)

et ƒ�t�1 � N(0, Ht)

¢yt � aECTt�1 � et;�¢yt � (DSPOTt, NEARDt)
T

The GS model parameters were estimated using an iterated seemingly
unrelated regressions (SUR) procedure on the linear discrete approxima-
tions to Equations (8) and (9). The resulting annualized parameter
estimates are m� � 0.017, a� 0.177, k � 9.183,s1 � 0.349,s2 � 1.157,
and r12 � 0.431. The large estimate of k suggests a high degree of mean-
reversion in the convenience yield, and the large estimate of s2 suggests
that it is highly volatile as well. We refer to this method of parameter esti-
mation as estimating the stochastic differential equations (SDEs).

To implement the optimal hedging scheme outlined in the above
section, an estimate of the market price of convenience yield risk in the
GS model is also needed. To accomplish this task, we follow Gibson and
Schwartz (1990) by finding the least-squares fit of the futures pricing
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formula in the GS model to the market data. Specifically, for each avail-
able week-ending futures price observation for each delivery in the data
set over the in-sample period, we collect the 5-tuple (F, S, d, t, r). We
then use all such observations to find the value of l that minimizes the
sum of squared pricing errors implied by Equation (12), using the esti-
mates of parameters other than l found by estimating the SDEs. The
value of l that we find is �0.132. As discussed in Gibson and Schwartz
(1990), finding a negative price of convenience yield risk is consistent
with the fact that the partial derivative of the futures price with respect
to the convenience yield is negative.

In addition to estimating the SDEs, it is also possible to directly esti-
mate the parameters of the term structure of volatility (TSV) in the GS
model, using market data observed during the recent past. This provides
a means by which the restrictive assumption of a constant TSV can be
somewhat relaxed. The TSV for the GS model is given by

(41)

Computing the annualized sample standard deviations of observed
futures log price changes for the most recent 2 months of daily observa-
tions for the nth nearby futures series provides us with a pair (ŝF, t)
where t is the average length of time until expiration. Collecting these
pairs for the 12 nearest nearby futures price series provides 12 observa-
tions with which we find the values of s1, s2, r12, and k that result in the
best fit, in the least-squares sense, of Equation (41) to the market data.
This exercise can be carried out at any point in time to arrive at a TSV
that reflects more recent market activity, rather than a very long
run average TSV found by estimating the SDEs. The estimated TSV
might be thought of as the generalization of what is commonly referred
to as “historical volatility.” Rather than estimating the annualized volatil-
ity of only the spot or futures price using a moving window of observa-
tions, however, the entire TSV is estimated. This provides a second
means that a hedger might use to arrive at the GS parameters needed to
calculate the optimal hedge ratio. As an example, Figure 1 presents the
GS term structure of volatility found by estimating the SDEs, and
the TSV found by direct estimation on June 21, 1996 (a date chosen
to illustrate an example of a high level of volatility in nearby futures). In
both cases, the TSV is a decreasing function of time until maturity, as
predicted by the Samuelson hypothesis. The functional form for the TSV

sF(t;s1,s2,r12,k) � Bs2
1 � 2s1s2r12a (1 � e�kt)

k
b � s2

2a (1 � e�kt)
k

b2
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FIGURE 1
The term structure of volatility (TSV) of crude oil in the Gibson–Schwartz model 

using different parameter estimation techniques.
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in the GS model does not require this, however; gentle increases at
longer times until maturity are permitted and are observed over some
intervals in the data set.

In addition to the two parameter estimation methods discussed above,
it is also theoretically possible to infer the TSV from observed futures option
prices if a closed-form solution for those prices is available for a given
model. In the case of the GS model, the value C at time t, of a European call
option with strike price X, expiring at time T1, on a futures contract with
price F, expiring at time T, is given in Hilliard and Reis (1998) as

(42)

where

(43)

and

(44)� 
s2

2

k2 c (T1 � t) �
2
k

(e�k(T�T1) � e�k(T�t) ) �
1
2k

(e�2k(T�T1) � e�2k(T�t) ) d

n2(t,T1,T) � s2
1(T1 � t) �

2s1s2r12

k
c (T1 � T) �

e�k(T�T1) � e�k(T�t)

k
d

d1 �
ln(F�X) � 0.5n2

n

C(F, X, t, T1, T) � e�r(T1�t)[FN(d1) � XN(d1 � n)]
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N(d1) represents the standard normal distribution function evaluated
at d1. To infer the TSV on a given date, the price for one approximately
at-the-money option on each futures contract was collected (where avail-
able). All such available option prices and the corresponding values of
F, X, r, T, and T1, were then used in attempts to find the values of s1, s2,
r12 and k that provided the best least-squares fit of (the highly nonlinear)
Equation (42). Just as the direct estimation of the TSV can be thought of
as a generalization of “historical volatility,” the option-implied TSV can
be thought of as a generalization of “implied volatility.” Unfortunately, in
many cases as few as five observations were available for this task, and
the inferred parameter values were often unreasonable, involving, for
example, values of s1 that were essentially zero, or extremely large values
for k. Given that this task could not be performed reliably with the avail-
able data, we do not use option-implied term structures of volatility for
hedging in the context of the GS model.

We now turn to the estimation of the parameters of the S97 model.
The linear discrete approximation of Equation (27) was estimated over
the in-sample estimation period using ordinary least squares, resulting in
the following annualized parameter estimates: m � 3.038, a � 2.993,
k � 1.334, and s1 � 0.347. The market price of risk in the S97 model
was estimated using a procedure analogous to that used to estimate the
market price of convenience yield risk in the GS model. The resulting in-
sample estimate of the market price of risk l is 0.025. In addition to esti-
mating the SDE of the S97 model, it is again possible to directly estimate
the TSV. The TSV for the S97 model is given by

sF(t; s1, k) � e�kts1 (45)

Again, pairs (ŝF, t) were collected for the 12 nearest nearby futures
series, and the natural logarithm of ŝF was regressed on t to arrive at
least-squares estimates for k and s1. In the case of the S97 model, we
find that it is possible to reliably infer the TSV using observed futures
option prices. The solution for European options on futures in the S97
model is given in Clewlow and Strickland (1999). The solution is
Equations (42) and (43) again, but Equation (44) is replaced with

(46)

The term structures of volatility estimated/inferred using the three
methods outlined above for the S97 model on June 21, 1996 are presented

n2(t,T1,T) �
s2

1

2k
[e�2k(T�T1) � e�2k(T�t)]
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FIGURE 2
The term structure of volatility (TSV) of crude oil in the Schwartz 1997 model 

using different parameter estimation and inference techniques.
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in Figure 2. Note first, that in all cases the TSV is a strictly decreasing
function of time until maturity as dictated by its exponential decay func-
tional form. The directly estimated TSV indicates a higher level of
volatility at all times until maturity than the option-implied TSV. As it
happened, the option-implied TSV indicated much higher levels
of volatility 1 or 2 months earlier. This highlights the lagged effect that
an increase in the general level of volatility will have on the TSV that
is directly estimated using a moving window of historical data. The
option-implied TSV, on the other hand, is calculated using data observed
on a single day and can therefore adjust instantly to changes in market
conditions.

Careful examination of the dynamics of the implied TSV, however,
reveals a more subtle problem. We found the S97 option-implied TSV
displayed a teetering behavior—an increase in implied spot price volatil-
ity was generally accompanied by a decrease in the implied volatility
of futures far from maturity and vice versa. Evidence of this is presented
in Figure 3. Over a 6-week period, the implied spot price volatility
increased roughly 8%, while the implied volatility of futures one year



634 Bryant and Haigh

FIGURE 3
The option-implied term structure of volatility (TSV) of crude oil in the 

Schwartz 1997 model observed on two dates.
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4To the authors’ knowledge, there are neither theoretical nor casual arguments that could rationalize
an increase in spot or nearby futures price volatility accompanying a decrease in distant futures
volatility (or vice versa). On the contrary, the argument that an increase in spot price variability is
consistent with an increase in uncertainty over the level of spot prices several months hence is highly
persuasive. If commodity prices follow a random walk or are only very weakly mean-reverting, as
empirical evidence suggests, then large magnitude current price shocks will significantly impact
future price levels.

from expiration decreased about 4%. This phenomenon seems difficult
to justify economically, and more likely results from the assumption of a
constant TSV.4 In actual practice, option traders anticipate mean rever-
sion in volatility levels—an increase in spot price volatility is likely to die
out as time passes. As discussed in Hull and White (1987), the prices of
options in a stochastic volatility environment should be a function of the
expected levels of volatility of the underlying value over the life of the
option. A short-term increase in spot price volatility has a large impact
on the average level of volatility over the life of option that is nearing
expiration, but a relatively small impact on the average level of volatility
expected over the life of an option far from expiration. A significant
increase in the premiums for options on nearby futures may therefore be
accompanied by only a modest increase in the prices of options on dis-
tant futures. A significant increase in nearby option prices necessarily
results in an increase in the value of s1 in the fitted TSV, but the rate of
decay of volatility k must also increase if the distant option prices have
not risen by much. This results in the observed teetering behavior.
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HEDGING EFFECTIVENESS

We consider the problem of a hypothetical crude oil trader with mean-
variance utility that wishes to take an optimal position in crude oil
futures using Equation (4). Following Gagnon, Lypny, and McCurdy
(1998) and Haigh and Holt (2000), the hedger’s risk aversion parameter
is set at two. We assume that the cash position is 100,000 barrels, and
that this position is hedged using the nearby futures contract. We further
assume that the hedger’s cash position corresponds to the specifications
of the futures contract (i.e., L � S). Optimal hedge ratios in the time
series hedging scheme are formed in each period by using the appropri-
ate elements of the conditional variance–covariance matrix Ht. When
hedging using the derivative pricing models, hedge ratios are formed
using either Equation (19) or Equation (33) after any appropriate param-
eter estimation or inference. Two methods of parameter estimation
are devised above for the GS model: (a) simply estimating the SDEs, and
(b) directly estimating the TSV each time a new hedge ratio is formed.
These two methods of parameter estimation are also available when
using the S97 model, and we additionally are able to infer the TSV from
futures option prices. We thus have five competing derivative pricing
model hedging schemes.

The time paths of hedge ratios generated by the VEC-GARCH and
GS models during the last 18 months of the in-sample period are pre-
sented in Figure 4. As expected, the hedge ratios generated by the GS
model with SDE parameters estimates are fairly stable relative to those
generated by the VEC-GARCH and GS model employing a freshly esti-
mated TSV each period. Nonetheless, the paths of the VEC-GARCH
and GS with SDE parameter estimates are similar—steady in late 1995,
dipping in the spring and summer of 1996, and then increasing in late
1996. Over the portion of the in-sample period for which we evaluate
hedging effectiveness, the correlation coefficient between these two
models’ hedge ratios is 0.53, while the correlation between the hedge
ratios from the VEC-GARCH and the GS model with an estimated TSV
is �0.10. The time paths of the optimal hedge ratios generated by the
three S97 models over the same time period are presented in Figure 5.
All three consistently follow a saw tooth pattern due to the functional
form of the TSV in the S97 model. Ignoring the speculative component
of Equation (33), and assuming the ratio of the spot price to the futures
price is approximately one, the optimal hedge ratio is then approximately
exp(kt). This is greater than one before futures expiration, and decays to
one at the time of expiration. As one might expect after examining
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FIGURE 5
Partial time paths of the in-sample optimal hedge ratios generated 

by the Schwartz 1997 (S97) model.
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FIGURE 4
Partial time paths of the in-sample optimal hedge ratios generated 

by the VEC-GARCH and Gibson–Schwartz (GS) models.
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Figures 4 and 5, the S97 hedge ratios are highly correlated with one
another, but not with the GS or VEC-GARCH hedge ratios.

To evaluate in-sample hedging effectiveness, the realized levels of
certainty equivalent income (CEI), based on the realized price changes
and conditional variances and covariances from the VEC-GARCH
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model, are evaluated for each week over the period January 3, 1992
through December 27, 1996. The average level of CEI is then calculated
for each of the six hedging models. Table IV presents these averages, as
well as that realized for the unhedged cash position. Certainty equivalent
income increases are large in all cases, demonstrating the excellent
hedging performance of NYMEX crude oil contract in the present con-
text. The VEC-GARCH model delivers the greatest CEI increase. Among
the derivative pricing models, there is no clear-cut pattern. Neither the
GS nor S97 models’ performance dominates the other. Also, neither of
the two available methods of parameter estimation is clearly superior.
Hedging using the GS model with estimated SDEs results in hedging
performance that is very similar to hedging using the S97 model with
estimated term structures of volatility. The S97 model with option-
implied terms structures of volatility provides the second worst hedging
performance, despite the attempt to glean insight into the future volatility
conditions expected by option traders.

Previous optimal hedging literature considers not only in-sample
hedging effectiveness, but stresses the need to evaluate out-of-sample
hedging effectiveness as well. This provides a fair test of how an optimal
hedging scheme is likely to perform in real-world conditions. To evaluate
out-of-sample hedging effectiveness, we re-estimate each model each
period using all available data at that point in time for each of the mod-
els, and then use each to make one period ahead forecasts of the compo-
nents of the hedger’s optimal hedge ratio. The resulting CEI in each
period is assessed using the ensuing actual price changes in the follow-
ing week and the conditional variances and covariances recovered from a
final VEC-GARCH model estimated using the entire data set. Again the
CEIs from each period are averaged for each hedging model and for the
unhedged case. Results are presented in Table V. These results are very
similar to those found in the in-sample period. The VEC-GARCH model

TABLE IV

In-Sample Hedging Effectivenessa

Average CEI

Unhedged �5.648E�09
S97 (estimated SDE) �1.018E�09
S97 (estimated TSV) �9.537E�08
S97 (inferred TSV) �1.058E�09
GS (estimated SDEs) �9.498E�08
GS (estimated TSV) �1.143E�09
VEC-GARCH �8.380E�08

aCEI is certainty equivalent income.
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results in the largest CEI increase. Again, the S97 model with estimated
TSV and the GS model with estimated SDEs deliver similar perform-
ance, roughly tying for second place. The remaining three models again
share the dishonor of being the three worst performing.

To determine if the superior hedging effectiveness of the VEC-
GARCH model is attributable to superior futures price forecasting (asso-
ciated with the speculative component of the hedge ratio) or the superior
variance and covariance forecasting, the out-of-sample forecasts of
nearby futures one-week price changes are evaluated. All models delivered
very similar root mean squared errors (RMSEs) of their forecasts, how-
ever the VEC-GARCH model provides the worst forecasts. The RMSE of
the VEC-GARCH forecasts is $1.161 per barrel, while derivative pricing
models’ RMSEs are tightly distributed around an average of $1.154 per
barrel. It therefore appears that the superior hedging performance of the
VEC-GARCH model is due entirely to superior modeling of conditional
variance and covariance dynamics.

Overall, the VEC-GARCH hedging model, which allows time-varying
variances and covariance, provides the best hedging performance,
despite producing the most variable hedge ratios (as measured by sample
standard deviation). The derivative pricing models’ hedge ratios are less
variable, but perform worse. This suggests that the hedge ratios generated
by derivative pricing models are not sufficiently reflecting changes
in volatility conditions. The cause of the inferior hedging performances
of the derivative pricing models thus appears to be the unrealistic assump-
tion of a constant TSV. Attempts to compensate for this shortcoming by
frequently estimating or inferring the TSV do not result in consistently
improved hedging effectiveness, and in no case is the performance of
the VEC-GARCH model matched. Estimating the TSV suffers from the

TABLE V

Out-of-Sample Hedging Effectivenessa

Average CEI

Unhedged �9.370E�09
S97 (estimated SDE) �2.908E�09
S97 (estimated TSV) �2.723E�09
S97 (inferred TSV) �2.989E�09
GS (estimated SDEs) �2.773E�09
GS (estimated TSV) �2.954E�09
VEC-GARCH �2.281E�09

aCEI is certainty equivalent income.
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problem of employing a moving window of historical data, and any change
in volatility conditions is reflected with somewhat of a lag. Inferring
the TSV from futures options prices (only practical for the S97 model) is
still done in a constant TSV context, and suffers from the teetering effect
described earlier. All methods of updating the parameters of the term
structures of volatility in the derivative pricing models also come at the
expense of a significant increase in computational complexity.

In a sense, the hedging problem formulated here is the easiest pos-
sible for the derivative pricing models. The assumption is made that the
hedger’s cash position corresponded with the futures contract specifica-
tions (i.e., L � S). We thus employed the optimal hedge ratios in
Equations (19) and (33) rather than those from the augmented models
in Equations (26) and (38). For many hedgers this will not be the case,
and the use of the augmented models would be necessary. This would
likely result in hedging performance that fell further short of that of the
VEC-GARCH model, for the following reason. The use of an augmented
derivative pricing model would add another layer of constant
variance–covariance assumptions—likely exacerbating the problem that
led to the poor performance when L � S. On the other hand, the case
where L 	 S presents no special problem for the time series model, as
one would simply employ the appropriate local cash price series rather
than the spot price series, and proceed as usual with a model that fully
incorporates conditional variance and covariance dynamics.

CONCLUSIONS

This research compares the performances of time series and derivative
pricing model-based optimal hedging models for trader that is long in a
cash commodity market, and maximizes mean-variance utility using
futures contracts. We find that the time series approach delivers superior
hedging performance to that of each of the other models considered.
This appears to be due to the derivative pricing models’ unpalatable
assumption of a constant volatility term structure. The constant volatility
term structure framework hampers even the seemingly promising tech-
nique of inferring option market participants’ expectations regarding
future volatility conditions.

This research considers only a single type of derivative, however. These
results suggest that the attractiveness of employing a simple derivative
pricing model (i.e., one that does not incorporate stochastic volatility) when
hedging a commodity market cash position using futures contracts (or
vice versa) is questionable. Few would doubt the usefulness of derivative
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pricing models in hedging a position in a derivative with a nonlinear
payoff function (e.g., an option), however. The conclusion then is that
different types of hedging models are suited to different tasks, and the
best approach in still other situations is uncertain. Furthermore, this
research considers only a single hedging objective. When commodity
producers or consumers purchase options they generally think of them
as being similar to insurance contracts. This suggests that they may be
maximizing utility of a form other than that employed here (and in much
of the optimal hedging literature). These issues illuminate the necessity of
further research.
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